[深度学习基础] PCA与LDA

我对PCA的浅显的理解

PCA:无监督数据降维
主成分分析,以n维数据降到m维为例:
对数据矩阵进行特征值分解,将分解得到的n个特征值由大到小排序,找到前m个特征值,再由这m个特征值对应的特征向量将原始n维数据重构为m维数据矩阵,即完成了数据降维。

LDA:有监督数据降维
线性判别分析,核心思想:将高维数据投影到低维后,使得类内方差最小,类间方差最大

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值