Cantor表 1083

题目描述 Description

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … 3/1 3/2 3/3 … 4/1 4/2 … 5/1 … … 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

输入描述 Input Description

整数N(1≤N≤10000000)

输出描述  Output Description

表中的第N项

样例输入 Sample Input

7

样例输出 Sample Output

1/4

数据范围及提示 Data Size & Hint

见描述

思路 模拟+统计

 1 #include<cmath>
 2 #include<cstdio>
 3 #include<string>
 4 #include<cstring>
 5 #include<iostream>
 6 #include<algorithm>
 7 using namespace std;
 8 int re(int a,int b)
 9 {
10     cout<<a<<'/'<<b<<endl;
11     return 0;
12 }
13 int main()
14 {
15     int n;
16     cin>>n;
17     int x=1,i=1,j=1;
18     bool I=1,J=1;
19     while(1<2)
20     {
21         if(i==1)
22         {
23             if(I)
24             {
25                 if(x==n)
26                 {
27                     re(i,j);
28                     return 0;
29                 }
30                 j++;
31                 x++;
32             }
33             else while(j>=2)
34                 {
35                     if(x==n)
36                     {
37                         re(i,j);
38                         return 0;
39                     }
40                     i++;
41                     j--;
42                     x++;
43                 }
44             I=!I;
45         }
46         else if(j==1&&i!=1)
47         {
48             if(J)
49             {
50                 if(x==n)
51                 {
52                     re(i,j);
53                     return 0;
54                 }
55                 i++;
56                 x++;
57             }
58             else while(i>=2)
59                 {
60                     if(x==n)
61                     {
62                         re(i,j);
63                         return 0;
64                     }
65                     i--;
66                     j++;
67                     x++;
68                 }
69             J=!J;
70         }
71     }
72     cout<<i<<'/'<<j<<endl;
73     return 0;
74 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值