电路第四章-正弦稳态分析

文章目录

第四章: 正弦稳态分析

正弦稳态分析:在正弦激励下的稳态响应

4.1 正弦量

正弦量:按正弦规律变化的电压电流

顺势表达式:
i ( t ) = I m cos ⁡ ( ω t + ϕ i ) u ( t ) = U m cos ⁡ ( ω t + ϕ u ) i(t)=I_m\cos(\omega t +\phi_i)\\ u(t)=U_m\cos(\omega t+\phi _u) i(t)=Imcos(ωt+ϕi)u(t)=Umcos(ωt+ϕu)

正弦量三要素

振幅

U m ( I m ) U_m(I_m) Um(Im)正弦量的最大值

初相

观察点与左侧最近最高点的水平距离

相位: ω t + ϕ \omega t+\phi ωt+ϕ

反应正弦量的计时起点

角频率: ω \omega ω

相位差

同频正弦波的初相差 θ \theta θ
u ( t ) = U m cos ⁡ ( ω t + ϕ u ) i ( t ) = I m cos ⁡ ( ω t + ϕ i ) θ = ( ω t − ϕ u ) − ( ω t + ϕ i ) = ϕ u − ϕ i u(t)=U_m\cos(\omega t+\phi_u)\\ i(t)=I_m\cos(\omega t+\phi_i)\\ \theta=(\omega t-\phi _u)-(\omega t+\phi _i)=\phi _u-\phi _i u(t)=Umcos(ωt+ϕu)i(t)=Imcos(ωt+ϕi)θ=(ωtϕu)(ωt+ϕi)=ϕuϕi

− π < θ < π -\pi<\theta<\pi π<θ<π

超前落后:

首先确定相位差在 − π , π -\pi,\pi π,π之间

ϕ 1 − ϕ 2 > 0 \phi_1-\phi_2>0 ϕ1ϕ2>0 f 1 f_1 f1相位超前 f 2 f_2 f2

特殊相位关系:

同相,反相,正交

有效值

积分平均值

同意周期内与交流电做功相同的直流电为有效值
I = 1 T ∫ 0 T i 2 ( t )   d t I=\sqrt{\frac{1}{T}\int_0^Ti^2(t)\,dt} I=T10Ti2(t)dt
对于交流电: i = I m 2 i=\frac{I_m}{\sqrt{2}} i=2 Im

有效值:220V民用交流电

最大值(振幅):绝缘水平,耐压值

4.2相量法

向量法:用复数分析电路的方法

复数及其运算

定义复数类方便计算

#include <iostream>
#include <algorithm>
#include <cmath>
#define PI (acos(0)*2)
using namespace std;
enum {Cartesian, Rad, angle};
class Complex {
	private:
		double model, rad;
		double real()const {
			return model * cos(rad);
		}
		double image()const {
			return model * sin(rad);
		}
	public:
		Complex() {}
		void setInCartesian(const double &r, const double &i) {
			model = sqrt(1.0 * r * r + i * i);
			rad = atan(1.0 * i / r);

		}
		void setInangle(const double &m, const double &angle) {
			model = m;
			rad = angle / 180 * PI;
		}
		void setInRad(const double &m, const double &r) {
			model = m;
			rad = r;
		}
		string toString(int mod = 0) {
			if (mod == Cartesian)
				return to_string(real()) + "+" + to_string(image()) + "i" ;
			else if (mod == Rad)
				return to_string(model) + "∠" + to_string(rad) + "rad";
			else if (mod == angle)
				return to_string(model) + "∠" + to_string(rad / PI * 180) + "°";
			return "?";
		}

		friend ostream &operator<<(ostream &os, const Complex &c) {
			os << c.model << "∠" << c.rad  / PI * 180.0 << "°";
			return os;
		}

		Complex operator+(const Complex &c) {
			double r = real();
			double i = image();
			double rc = c.real();
			double ic = c.image();
			Complex newC;
			newC.setInCartesian(r + rc, i + ic);
			return newC;
		}
		Complex operator*(const Complex &c) {
			Complex newC;
			newC.setInRad(model * c.model, rad + c.rad);
			return newC;
		}
		Complex operator+(const double &lambda) {
			double r = real();
			Complex newC;
			newC.setInCartesian(r + lambda, image());
			return newC;
		}
		friend Complex operator+(const double &lambda, const Complex &c) {
			double r = c.real();
			Complex newC;
			newC.setInCartesian(r + lambda, c.image());
			return newC;
		}
		void operator+=(const Complex &c) {
			double r = real() + c.real();
			double i = image() + c.image();
			setInCartesian(r, i);
		}
		void operator+=(const double &lambda) {
			double r = real() + lambda;
			double i = image();
			setInCartesian(r, i);
		}
		Complex operator/(const Complex &c) {
			Complex newC;
			newC.setInRad(model / c.model, rad - c.rad);
			return newC;
		}
		Complex operator*(const double &lambda) {
			Complex newC(*this);
			newC.model *= (lambda );
			return newC;
		}
		friend Complex operator*(const double &lambda, const Complex &c) {
			Complex newC(c);
			newC.model *= (lambda );
			return newC;
		}
		void operator*=(const Complex &c) {
			model *= c.model;
			rad += c.rad;
		}
		void operator*=(const double &lambda) {
			model *= lambda;
		}
};

表示:

j ( 或 者 i ) = − 1 j(或者i)=\sqrt{-1} j(i)=1 表示虚数单位

则复数的表示为:

直角坐标: Z = a + j b Z=a+jb Z=a+jb

极坐标: A = ∣ A ∣ e j θ = ∣ A ∣ ∠ θ A=|A|e^{j\theta}=|A|\angle \theta A=Aejθ=Aθ

Z = r 1 e i θ = r 1 cos ⁡ θ 1 + r 1 sin ⁡ θ 1 i = r 1 ∠ θ Z=r_1e^{i\theta}=r_1\cos \theta_1+r_1\sin \theta_1 i=r_1\angle \theta Z=r1eiθ=r1cosθ1+r1sinθ1i=r1θ

复数的运算

加减

极坐标形势下的加减法

加减用直角坐标表示时比较容易计算
A 1 + A 2 = ( a 1 + a 2 ) + ( b 1 + b 2 ) j A_1+A_2=(a_1+a_2)+(b_1+b_2)j\\ A1+A2=(a1+a2)+(b1+b2)j

乘除

{ A 1 = ∣ A 1 ∣ ∠ θ 1 A 2 = ∣ A 2 ∣ ∠ θ 2 \begin{cases} A_1=|A_1|\angle \theta_1\\ A_2=|A_2|\angle \theta_2\\ \end{cases} {A1=A1θ1A2=A2θ2

A 1 × A 2 = ∣ A 1 ∣ e j θ 1 × ∣ A 2 ∣ e j θ 2 = ∣ A 1 ∣ ∣ A 2 ∣ e ( θ 1 + θ 2 ) j = ∣ A 1 ∣ ∣ A 2 ∣ ∠ ( θ 1 + θ 2 ) A_1\times A_2=|A_1|e^{j\theta _1}\times|A_2|e^{j\theta _2}=|A_1||A_2|e^{(\theta_1+\theta_2)j}=|A_1||A_2|\angle (\theta_1+\theta_2) A1×A2=A1ejθ1×A2ejθ2=A1A2e(θ1+θ2)j=A1A2(θ1+θ2)

A 1 A 2 = ∣ A 1 ∣ ∠ θ 1 ∣ A 2 ∣ ∠ θ 2 = ∣ A 1 ∣ ∣ A 2 ∣ e ( θ 1 − θ 2 ) j = ∣ A 1 ∣ ∣ A 2 ∣ ∠ ( θ 1 − θ 2 ) \frac{A_1}{A_2}=\frac{|A_1|\angle \theta_1}{|A_2|\angle\theta _2}=\frac{|A_1|}{|A_2|}e^{(\theta_1-\theta_2)j}=\frac{|A_1|}{|A_2|}\angle(\theta_1-\theta_2) A2A1=A2θ2A1θ1=A2A1e(θ1θ2)j=A2A1(θ1θ2)

正弦量和相量

任意一个正弦量都可以找到唯一一个与之对应的复指数函数:

比如对于 i ( t ) = 2 I cos ⁡ ( ω t + ϕ ) i(t)=\sqrt{2}I\cos(\omega t+\phi) i(t)=2 Icos(ωt+ϕ)

其对应的复指数函数为: A ( t ) = 2 I e j ( ω t + ϕ ) = 2 I cos ⁡ ( ω t + ϕ ) + 2 I sin ⁡ ( ω t + ϕ ) j A(t)=\sqrt{2}Ie^{j(\omega t+\phi)}=\sqrt{2}I\cos(\omega t+\phi)+\sqrt{2}I\sin(\omega t+\phi)j A(t)=2 Iej(ωt+ϕ)=2 Icos(ωt+ϕ)+2 Isin(ωt+ϕ)j

定义复常数 I ˙ = I e j ϕ = I ∠ ϕ \dot I=Ie^{j\phi}=I\angle \phi I˙=Iejϕ=Iϕ为有效值相量

I m = 2 I ˙ I_m=\sqrt 2\dot I Im=2 I˙为振幅相量

I ˙ = I ∠ ϕ i \dot I=I\angle \phi_i I˙=Iϕi为正弦量 i ( t ) i(t) i(t)对应向量

相量运算
同频率相量加减

u 1 ( t ) = 2 U 1 cos ⁡ ( ω t + ϕ 1 ) = R e ( 2 U ˙ 1 e j ω t ) u_1(t)=\sqrt{2}U_1\cos(\omega t+\phi _1)=Re(\sqrt 2\dot U_1 e^{j\omega t}) u1(t)=2 U1cos(ωt+ϕ1)=Re(2 U˙1ejωt)

u 2 ( t ) = 2 U 2 cos ⁡ ( ω t + ϕ 2 ) = R e ( 2 U ˙ 2 e j ω t ) u_2(t)=\sqrt{2}U_2\cos(\omega t+\phi _2)=Re(\sqrt 2\dot U_2 e^{j\omega t}) u2(t)=2 U2cos(ωt+ϕ2)=Re(2 U˙2ejωt)

u ( t ) = u 1 ( t ) + u 2 ( t ) = R e ( 2 ( U ˙ 1 + U ˙ 2 ) e j ω t ) u(t)=u_1(t)+u_2(t)=Re(\sqrt 2(\dot U_1+\dot U_2)e^{j\omega t}) u(t)=u1(t)+u2(t)=Re(2 (U˙1+U˙2)ejωt)


u 1 ( t ) = 2 × 6 cos ⁡ ( 100 π t + π 6 ) = R e ( 2 U ˙ 1 e j × 100 π t ) u 2 ( t ) = 2 × 4 cos ⁡ ( 100 π t + π 3 ) = R e ( 2 U ˙ 2 e j × 100 π t ) u_1(t)=\sqrt 2\times 6\cos(100\pi t+\frac{\pi}{6})=Re(\sqrt 2 \dot U_1e^{j\times100\pi t})\\ u_2(t)=\sqrt 2\times 4\cos(100\pi t+\frac{\pi}{3})=Re(\sqrt 2 \dot U_2e^{j\times100\pi t}) u1(t)=2 ×6cos(100πt+6π)=Re(2 U˙1ej×100πt)u2(t)=2 ×4cos(100πt+3π)=Re(2 U˙2ej×100πt)
其中
U ˙ 1 = 6 e j π 6 = 6 ∠ π 6 U ˙ 2 = 4 e j π 4 = 4 ∠ π 4 \dot U_1=6e^{j\frac{\pi}{6}}=6\angle \frac{\pi}{6}\\ \dot U_2=4e^{j\frac{\pi}{4}}=4\angle \frac{\pi}{4} U˙1=6ej6π=66πU˙2=4ej4π=44π

u 1 ( t ) + u 2 ( t ) = R e ( 2 ( U ˙ 1 + U ˙ 2 ) e j × 100 π t ) u_1(t)+u_2(t)=Re(\sqrt2(\dot U_1+\dot U_2)e^{j\times 100\pi t}) u1(t)+u2(t)=Re(2 (U˙1+U˙2)ej×100πt)

U ˙ = U ˙ 1 + U ˙ 2 = 6 ∠ π 6 + 4 ∠ π 4 = 6 × 3 2 + 6 × 1 2 j + 4 × 1 2 + 4 × 3 2 j = ( 3 3 + 2 ) + ( 3 + 2 3 ) j = 7.20 + 6.46 j \dot U=\dot U_1+\dot U_2=6\angle \frac{\pi}{6}+4\angle \frac{\pi}{4}\\ =6\times \frac{\sqrt 3}{2}+6\times \frac{1}{2}j+4\times \frac{1}{2}+4\times \frac{\sqrt 3}{2}j=(3\sqrt 3+2)+(3+2\sqrt 3)j\\ =7.20+6.46j U˙=U˙1+U˙2=66π+44π=6×23 +6×21j+4×21+4×23 j=(33 +2)+(3+23 )j=7.20+6.46j

U ˙ \dot U U˙相量的实部为7.20,虚部为6.46,故相量 U ˙ \dot U U˙的角度制极坐标表示为:
U ˙ = r e a l 2 + i m a g e 2 arctan ⁡ i m a g e r e a l = 7.2 0 2 + 6.4 6 2 ∠ arctan ⁡ 6.46 7.20 = 9.67 ∠ 41.90 \dot U=\sqrt{real^2+image^2}\arctan\frac{image}{real}=\sqrt{7.20^2+6.46^2}\angle\arctan\frac{6.46}{7.20}\\ =9.67\angle 41.90 U˙=real2+image2 arctanrealimage=7.202+6.462 arctan7.206.46=9.6741.90
由相量的极坐标表示容易得出时域表示:

u ( t ) = 9.67 2 cos ⁡ ( ω t + 41.9 ) = 9.67 2 cos ⁡ ( 100 π t + 41.9 ) u(t)=9.67\sqrt 2\cos (\omega t+41.9)=9.67\sqrt 2\cos(100\pi t+41.9) u(t)=9.672 cos(ωt+41.9)=9.672 cos(100πt+41.9)

正弦量的微积分运算:

假设 i ( t ) = 2 I cos ⁡ ( ω t + ϕ i ) i(t)=\sqrt 2I\cos(\omega t+\phi_i) i(t)=2 Icos(ωt+ϕi)

则电流的相量表示为: I ˙ = I ∠ ϕ i \dot I=I\angle \phi_i I˙=Iϕi

微分运算:
d i d t = d ( 2 I cos ⁡ ( ω t + ϕ i ) ) d t = − 2 ω I sin ⁡ ( ω t + ϕ i ) = 2 ω I cos ⁡ ( ω t + ϕ i + π 2 ) \frac{di}{dt}=\frac{d(\sqrt 2I\cos(\omega t+\phi_i))}{dt}\\ =-\sqrt2 \omega I\sin(\omega t+\phi_i)\\ =\sqrt2 \omega I\cos(\omega t+\phi_i+\frac{\pi}{2}) dtdi=dtd(2 Icos(ωt+ϕi))=2 ωIsin(ωt+ϕi)=2 ωIcos(ωt+ϕi+2π)

d i d t = ω I ∠ ( ϕ i + π 2 ) = ω I e ϕ i j e π 2 j = ω I e ϕ i j ( cos ⁡ π 2 + sin ⁡ π 2 j ) = ω I j e ϕ i j = j ω I ˙ \begin{aligned} \frac{di}{dt}&=\omega I\angle (\phi _i+\frac{\pi}{2})\\ &=\omega I e^{\phi_ij}e^{\frac{\pi}{2}j}\\ &=\omega Ie^{\phi_ij}(\cos \frac{\pi}{2}+\sin\frac{\pi}{2}j)\\ &=\omega Ije^{\phi_i j}\\ &=j\omega \dot I \end{aligned} dtdi=ωI(ϕi+2π)=ωIeϕije2πj=ωIeϕij(cos2π+sin2πj)=ωIjeϕij=jωI˙

积分运算:
∫ i d t = 2 I ∫ cos ⁡ ( ω t + ϕ i )   d t = 2 I ω ∫ cos ⁡ ( ω t + ϕ i ) d ( ω t + ϕ i ) = 2 I ω sin ⁡ ( ω t + ϕ i ) = 2 I ω cos ⁡ ( ω t + ϕ i − π 2 ) = 2 I ω e ϕ i j e − j π 2 = 2 I ω e ϕ i j e π 2 j = 2 I ω j e ϕ 1 j = I ˙ j ω = I ˙ j j 2 ω = − j I ˙ ω \begin{aligned} \int idt&=\sqrt 2I\int \cos(\omega t+\phi_i)\,dt\\ &=\sqrt 2\frac{I}{\omega}\int \cos(\omega t+\phi_i)d(\omega t+\phi_i)\\ &=\sqrt2 \frac{I}{\omega}\sin(\omega t+\phi _i)\\ &=\sqrt2 \frac{I}{\omega}\cos(\omega t+\phi_i-\frac{\pi}{2})\\ &=\sqrt2 \frac{I}{\omega}e^{\phi _ij}e^{-j\frac{\pi}{2}}\\ &=\sqrt2 \frac{I}{\omega}\frac{e^{\phi_ij}}{e^{\frac{\pi}{2}j}}\\ &=\sqrt2 \frac{I}{\omega j}e^{\phi_1 j}\\ &=\frac{\dot I}{j\omega }\\&=\frac{\dot Ij}{j^2\omega}\\&=-\frac{j\dot I}{\omega} \end{aligned} idt=2 Icos(ωt+ϕi)dt=2 ωIcos(ωt+ϕi)d(ωt+ϕi)=2 ωIsin(ωt+ϕi)=2 ωIcos(ωt+ϕi2π)=2 ωIeϕijej2π=2 ωIe2πjeϕij=2 ωjIeϕ1j=jωI˙=j2ωI˙j=ωjI˙

由KVL定律:
i R + L d i d t = u iR+L\frac{di}{dt}=u iR+Ldtdi=u
故相量形式为:
I ˙ R + j ω L I ˙ = U ˙ I ˙ = U ˙ R + j ω L = U ∠ ϕ R 2 + ( ω L ) 2 ∠ arctan ⁡ ω L R = U ˙ R 2 + ( ω L ) 2 ∠ ( ϕ − arctan ⁡ ω L R ) \dot IR+j\omega L\dot I=\dot U\\ \dot I=\frac{\dot U}{R+j\omega L}\\ =\frac{U\angle \phi}{\sqrt{R^2+(\omega L)^2}\angle\arctan\frac{\omega L}{R}}\\ =\frac{\dot U}{\sqrt{R^2+(\omega L)^2}}\angle(\phi-\arctan\frac{\omega L}{R}) I˙R+jωLI˙=U˙I˙=R+jωLU˙=R2+(ωL)2 arctanRωLUϕ=R2+(ωL)2 U˙(ϕarctanRωL)
故时域形式为:
i ( t ) = 2 U R 2 + ( ω L ) 2 cos ⁡ ( ω t + ϕ − arctan ⁡ ω L R ) i(t)=\frac{\sqrt 2U}{\sqrt{R^2+(\omega L)^2}}\cos(\omega t+\phi-\arctan\frac{\omega L}{R}) i(t)=R2+(ωL)2 2 Ucos(ωt+ϕarctanRωL)

4.3电路定律的相量形式:

基尔霍夫定律的相量形式:

基本元件VAR的相量形式:

电阻 U ˙ = R I ˙ \dot U=R\dot I U˙=RI˙

电阻的电压与电流时刻同相位

电感
VAR微分形式的相量形式 U ˙ = j ω L I ˙ \dot U=j\omega L\dot I U˙=jωLI˙

由时域形式的VAR微分方程 u ( t ) = L d i ( t ) d t u(t)=L\frac{di(t)}{dt} u(t)=Ldtdi(t)推导可得
{ U ˙ = j ω L I ˙ ϕ u = ϕ i + π 2 电 压 相 位 超 前 电 流 π 2 \begin{cases} \dot U=j\omega L\dot I\\ \phi_u=\phi _i+\frac{\pi}{2}电压相位超前电流\frac{\pi}{2} \end{cases} {U˙=jωLI˙ϕu=ϕi+2π2π

VAR积分形式的相量形式 I ˙ = − j 1 ω L U ˙ \dot I=-j\frac{1}{\omega L}\dot U I˙=jωL1U˙
感抗和感纳

X L = ω L X_L=\omega L XL=ωL记为感抗,单位Ω

U = X L L U=X_LL U=XLL

B L = 1 X L B_L=\frac{1}{X_L} BL=XL1记为感纳,单位S

功率

i ( t ) = 2 I cos ⁡ ( ω t + ϕ ) i(t)=\sqrt2 I\cos(\omega t+\phi) i(t)=2 Icos(ωt+ϕ)

u ( t ) = 2 U cos ⁡ ( ω t + ϕ + π 2 ) u(t)=\sqrt 2 U\cos(\omega t+\phi+\frac{\pi}{2}) u(t)=2 Ucos(ωt+ϕ+2π)
p = u i = − U I sin ⁡ 2 ( ω t + ϕ ) p=ui=-U I\sin2(\omega t+\phi) p=ui=UIsin2(ωt+ϕ)

电容 I ˙ = ω C U ∠ ( ϕ u + π 2 ) = j ω C U ˙ \dot I=\omega CU\angle (\phi_u+\frac{\pi}{2})=j\omega C\dot U I˙=ωCU(ϕu+2π)=jωCU˙

电流相位超前电压 π 2 \frac{\pi}{2} 2π

容抗与容纳:

{ 容 抗 : X C = 1 ω C , 单 位 Ω 容 纳 : B C = ω C , 单 位 S \begin{cases} 容抗:X_C=\frac{1}{\omega C},单位Ω\\ 容纳:B_C=\omega C,单位S \end{cases} {:XC=ωC1,Ω:BC=ωC,S

已知: i = 2 2 cos ⁡ 5 t i= 2 \sqrt 2\cos5t i=22 cos5tA,求电压u = ?


I ˙ = 2 ∠ 0 = 2 为 实 数 \dot I=2\angle 0=2为实数 I˙=20=2

由KVL定律相量形式:
U ˙ = U ˙ R + U ˙ L + U ˙ C { U ˙ R = I ˙ R = 8 U ˙ L = j ω L I ˙ = 24 j U ˙ C = − j 1 ω C I ˙ = − 16 j U ˙ = I ˙ R + j ω L I ˙ − j 1 ω C I ˙ = 8 + 8 j = 8 2 ∠ π 4 \dot U=\dot U_R+\dot U_L+\dot U_C\\ \begin{cases} \dot U_R=\dot IR=8\\ \dot U_L=j\omega L\dot I=24j\\ \dot U_C=-j\frac{1}{\omega C}\dot I=-16j \end{cases} \\ \dot U=\dot IR+j\omega L\dot I-j\frac{1}{\omega C}\dot I =8+8j=8\sqrt 2\angle \frac{\pi}{4} U˙=U˙R+U˙L+U˙CU˙R=I˙R=8U˙L=jωLI˙=24jU˙C=jωC1I˙=16jU˙=I˙R+jωLI˙jωC1I˙=8+8j=82 4π

u ( t ) = 16 cos ⁡ ( 5 t + ∠ π 4 ) u(t)=16\cos(5t+\angle \frac{\pi}{4}) u(t)=16cos(5t+4π)

4.4阻抗与导纳

对于正弦激励下的稳态电路:

阻抗: Z = U ˙ I ˙ = R + j X Z=\frac{\dot U}{\dot I}=R+jX Z=I˙U˙=R+jX

阻抗:将所有元件都看作电阻(相量模型下的电阻,电压和电流的相位不一定相同)统一处理

电阻定律的相量表示形式:
Z = U ˙ I ˙ = U ∠ ϕ u I ∠ ϕ i = ∣ Z ∣ ∠ θ Z = R + j X Z=\frac{\dot U}{\dot I}=\frac{U\angle\phi_u}{I\angle\phi_i}=|Z|\angle \theta _Z=R+jX Z=I˙U˙=IϕiUϕu=ZθZ=R+jX
其中:
{ U I = ∣ Z ∣ = R 2 + X 2 ϕ u − ϕ i = θ Z = arctan ⁡ X R \begin{cases} \frac{U}{I}=|Z|=\sqrt{R^2+X^2}\\ \phi_u-\phi_i=\theta_Z=\arctan\frac{X}{R} \end{cases} {IU=Z=R2+X2 ϕuϕi=θZ=arctanRX

导纳: Y = I ˙ U ˙ = G + j B = ∣ Y ∣ ∠ θ Y Y=\frac{\dot I}{\dot U}=G+jB=|Y|\angle \theta _Y Y=U˙I˙=G+jB=YθY

元件 U ˙ − I ˙ \dot U-\dot I U˙I˙关系阻抗(应用于网孔电流法)导纳(应用于结点电压法)
R U ˙ = R I ˙ \dot U=R\dot I U˙=RI˙ Z R = R Z_R=R ZR=R Y R = 1 R Y_R=\frac{1}{R} YR=R1
L U ˙ = j ω L I ˙ \dot U=j\omega L\dot I U˙=jωLI˙ Z L = j ω L Z_L=j\omega L ZL=jωL Y L = 1 j ω L = − j ω L Y_L=\frac{1}{j\omega L}=-\frac{j}{\omega L} YL=jωL1=ωLj
C U ˙ = − j 1 ω C I ˙ \dot U=-j\frac{1}{\omega C}\dot I U˙=jωC1I˙ Z C = − j ω C Z_C=-\frac{j}{\omega C} ZC=ωCj Y C = j ω C Y_C=j\omega C YC=jωC

RLC串联电路的阻抗: Z = U ˙ I ˙ = R + ( ω L − 1 ω C ) j = R + X j Z=\frac{\dot U}{\dot I}=R+(\omega L-\frac{1}{\omega C})j=R+Xj Z=I˙U˙=R+(ωLωC1)j=R+Xj

相量模型下的VAR方程:
{ U ˙ R = I ˙ Z R U ˙ L = I ˙ Z L U ˙ C = I ˙ Z C \begin{cases} \dot U_R=\dot IZ_R\\ \dot U_L=\dot IZ_L\\ \dot U_C=\dot IZ_C \end{cases} U˙R=I˙ZRU˙L=I˙ZLU˙C=I˙ZC
带入各元件的阻抗公式:
{ U ˙ R = I ˙ R U ˙ L = j ω L I ˙ U ˙ C = − j 1 ω C I ˙ \begin{cases} \dot U_R=\dot IR\\ \dot U_L=j\omega L\dot I\\ \dot U_C=-j\frac{1}{\omega C}\dot I \end{cases} U˙R=I˙RU˙L=jωLI˙U˙C=jωC1I˙
由KVL定律:
U ˙ = U ˙ R + U ˙ L + U ˙ C = [ R + ( ω L − 1 ω C ) j ] I ˙ \dot U=\dot U_R+\dot U_L+\dot U_C=[R+(\omega L-\frac{1}{\omega C})j]\dot I U˙=U˙R+U˙L+U˙C=[R+(ωLωC1)j]I˙
将整个串联电路视为相量模型下的一个大电阻,则其阻抗为:
Z = U ˙ I ˙ = R + ( ω L − 1 ω C ) j = R + X j Z=\frac{\dot U}{\dot I}=R+(\omega L-\frac{1}{\omega C})j=R+Xj Z=I˙U˙=R+(ωLωC1)j=R+Xj

{ ∣ Z ∣ = R 2 + ( ω L − 1 ω C ) 2 θ = arctan ⁡ ω L − 1 ω C R \begin{cases} |Z|=\sqrt{R^2+(\omega L-\frac{1}{\omega C})^2}\\ \theta =\arctan\frac{\omega L-\frac{1}{\omega C}}{R} \end{cases} Z=R2+(ωLωC1)2 θ=arctanRωLωC1

其中 θ \theta θ为电压与电流的相位角差

如果 θ > 0 \theta>0 θ>0 ω L > 1 ω C \omega L>\frac{1}{\omega C} ωL>ωC1则电压超前电流,电路呈现感性

如果 θ < 0 \theta<0 θ<0 ω L < 1 ω C \omega L<\frac{1}{\omega C} ωL<ωC1则电流超前电压,电路呈现容性

如果 θ = 0 \theta=0 θ=0 ω L = 1 ω C \omega L=\frac{1}{\omega C} ωL=ωC1则电压与电流同相位,电路呈现电阻性

RLC并联电路的导纳:

I ˙ = I ˙ R + I ˙ L + I ˙ C = U ˙ R − j ω L U ˙ + j ω C U ˙ = ( 1 R + ( ω C − 1 ω L ) j ) U ˙ \dot I=\dot I_R+\dot I_L+\dot I_C\\ =\frac{\dot U}{R}-\frac{j}{\omega L}\dot U+j\omega C\dot U=(\frac{1}{R}+(\omega C-\frac{1}{\omega L})j)\dot U I˙=I˙R+I˙L+I˙C=RU˙ωLjU˙+jωCU˙=(R1+(ωCωL1)j)U˙

Y = I ˙ U ˙ = 1 R + ( ω C − 1 ω L ) j = G + j B Y=\frac{\dot I}{\dot U}=\frac{1}{R}+(\omega C-\frac{1}{\omega L})j=G+jB Y=U˙I˙=R1+(ωCωL1)j=G+jB

其中 B = ω C − 1 ω L B=\omega C-\frac{1}{\omega L} B=ωCωL1

当B>0说明C的影响力更大,电路为容性

阻抗和导纳的关系 Y Z = 1 YZ=1 YZ=1

将一个串联的正弦稳态响应电路等效为一个并联电路:


Z = R + j X Y = G + j B Y = 1 Z Z=R+jX\\ Y=G+jB\\ Y=\frac{1}{Z} Z=R+jXY=G+jBY=Z1

1 Z = 1 R + j X = R − j X ( R + j X ) ( R − j X ) = R − j X R 2 − X 2 = R R 2 − X 2 − j X R 2 − X 2 = Y = G + j B \frac{1}{Z}=\frac{1}{R+jX}=\frac{R-jX}{(R+jX)(R-jX)}=\frac{R-jX}{R^2-X^2}=\frac{R}{R^2-X^2}-j\frac{X}{R^2-X^2}=Y=G+jB Z1=R+jX1=(R+jX)(RjX)RjX=R2X2RjX=R2X2RjR2X2X=Y=G+jB


{ G = R R 2 − X 2 B = − X R 2 − X 2 \begin{cases} G=\frac{R}{R^2-X^2}\\ B=-\frac{X}{R^2-X^2} \end{cases} {G=R2X2RB=R2X2X

直流电路分析方法迁移到相量模型中的形式:

方法直流电路中相量模型中
网孔电流法 本 网 孔 电 流 × 本 网 孔 自 电 阻 和 − ∑ 相 邻 网 孔 电 流 × 与 本 网 孔 的 互 电 阻 = ∑ 本 网 孔 电 压 降 本网孔电流\times 本网孔自电阻和-\sum相邻网孔电流\times 与本网孔的互电阻\\=\sum 本网孔电压降 ××= 本 网 孔 电 流 相 量 × 本 网 孔 自 阻 抗 和 − ∑ 相 邻 网 孔 电 流 × 与 本 网 孔 的 互 阻 抗 = ∑ 本 网 孔 电 压 降 相 量 本网孔电流相量\times 本网孔自阻抗和-\sum 相邻网孔电流\times 与本网孔的互阻抗\\=\sum 本网孔电压降相量 ××=
结点电压法 本 结 点 电 压 × 本 结 点 电 导 和 − ∑ 邻 接 结 点 电 压 × 与 本 结 点 的 互 电 导 = ∑ 流 入 本 结 点 的 电 流 本结点电压\times 本结点电导和-\sum 邻接结点电压\times 与本结点的互电导=\\\sum 流入本结点的电流 ××= 本 结 点 电 压 相 量 × 本 网 孔 自 导 纳 和 − ∑ 邻 接 结 点 电 压 相 量 × 与 本 结 点 的 互 导 纳 = ∑ 流 入 本 结 点 的 电 流 相 量 本结点电压相量\times 本网孔自导纳和-\sum 邻接结点电压相量\times 与本结点的互导纳=\\\sum流入本结点的电流相量 ××=
等效原理并联电阻总阻值为 1 R = ∑ i = 1 n 1 R i \frac{1}{R}=\sum_{i=1}^n\frac{1}{R_i} R1=i=1nRi1并联阻抗总阻值为 1 Z = ∑ i = 1 n 1 Z i \frac{1}{Z}=\sum_{i=1}^n\frac{1}{Z_i} Z1=i=1nZi1

4.5正弦稳态电路的功率

瞬时功率、平均功率、无功功率、视在功率

瞬时功率 P ( t ) = U I [ cos ⁡ ( 2 ( ω t + ϕ u ) − θ ) + cos ⁡ θ ] P(t)=UI[\cos(2(\omega t+\phi_u)-\theta)+\cos \theta] P(t)=UI[cos(2(ωt+ϕu)θ)+cosθ]

  • 积化和差公式

    • formula

    • formula

    • formula

    • formula

P ( t ) = u ( t ) i ( t ) = 2 U I cos ⁡ ( ω t + ϕ u ) cos ⁡ ( ω t + ϕ u − θ ) = U I [ cos ⁡ ( 2 ( ω t + ϕ u ) − θ ) + cos ⁡ θ ] = U I [ cos ⁡ 2 ( ω t + ϕ u ) cos ⁡ θ + sin ⁡ 2 ( ω t + ϕ u ) sin ⁡ θ + cos ⁡ θ ] = U I [ cos ⁡ 2 ( ω t + ϕ u ) cos ⁡ θ + cos ⁡ θ ] + U I [ sin ⁡ 2 ( ω t + ϕ u ) sin ⁡ θ ] P(t)=u(t)i(t)\\ =2UI\cos(\omega t+\phi_u)\cos(\omega t+\phi_u-\theta)\\ =UI[\cos(2(\omega t+\phi_u)-\theta)+\cos \theta]\\ =UI[\cos2(\omega t+\phi_u)\cos\theta+\sin2(\omega t+\phi_u)\sin\theta+\cos\theta]\\ =UI[\cos2(\omega t+\phi_u)\cos\theta+\cos\theta]+UI[\sin2(\omega t+\phi_u)\sin\theta] P(t)=u(t)i(t)=2UIcos(ωt+ϕu)cos(ωt+ϕuθ)=UI[cos(2(ωt+ϕu)θ)+cosθ]=UI[cos2(ωt+ϕu)cosθ+sin2(ωt+ϕu)sinθ+cosθ]=UI[cos2(ωt+ϕu)cosθ+cosθ]+UI[sin2(ωt+ϕu)sinθ]

其中 U I [ sin ⁡ 2 ( ω t + ϕ u ) sin ⁡ θ ] UI[\sin2(\omega t+\phi_u)\sin\theta] UI[sin2(ωt+ϕu)sinθ]为消耗功率

U I [ cos ⁡ 2 ( ω t + ϕ u ) cos ⁡ θ + cos ⁡ θ ] UI[\cos2(\omega t+\phi_u)\cos\theta+\cos\theta] UI[cos2(ωt+ϕu)cosθ+cosθ]为交换功率

平均功率 P = U I cos ⁡ θ P=UI\cos\theta P=UIcosθ

一个周期内的功率平均值
P = 1 T ∫ P ( t )   d t = 1 T U I ∫ 0 T ( cos ⁡ ( 2 ω t + 2 ϕ u − θ ) + cos ⁡ θ )   d t P=\frac{1}{T}\int P(t)\,dt\\ =\frac{1}{T}UI\int_0^T (\cos (2\omega t+2\phi_u-\theta)+\cos \theta)\,dt P=T1P(t)dt=T1UI0T(cos(2ωt+2ϕuθ)+cosθ)dt
由于
∫ 0 T cos ⁡ ( 2 ω t + 2 ϕ u − θ )   d t = 1 2 ω ∫ 0 T cos ⁡ ( 2 ω t + 2 ϕ u − θ )   d ( 2 ω t + 2 ϕ u − θ ) = 1 2 ω sin ⁡ ( 2 ω t + 2 ϕ u − θ ) ∣ 0 2 π ω = 1 2 ω [ sin ⁡ ( 4 π + 2 ϕ u − θ ) − sin ⁡ ( 2 ϕ u − θ ) ] = 0 \begin{aligned} &\int_0^T \cos(2\omega t+2\phi_u-\theta)\,dt\\ &=\frac{1}{2\omega}\int_0^T\cos(2\omega t+2\phi_u-\theta)\,d(2\omega t+2\phi_u-\theta)\\ &=\frac{1}{2\omega}\sin(2\omega t+2\phi_u-\theta)|_0^\frac{2\pi}{\omega}\\ &=\frac{1}{2\omega}[\sin(4\pi+2\phi_u-\theta)-\sin(2\phi_u-\theta)]\\ &=0 \end{aligned} 0Tcos(2ωt+2ϕuθ)dt=2ω10Tcos(2ωt+2ϕuθ)d(2ωt+2ϕuθ)=2ω1sin(2ωt+2ϕuθ)0ω2π=2ω1[sin(4π+2ϕuθ)sin(2ϕuθ)]=0

P = U I cos ⁡ θ P=UI\cos\theta P=UIcosθ
其中 θ \theta θ为电压与电流的相位差

功率因数 cos ⁡ θ = P U I \cos \theta=\frac{P}{UI} cosθ=UIP

功率因数的求法:

1.从 θ \theta θ入手,分别求得电压,电流的相位做差得到 θ \theta θ然后求余弦值

2.从定义式入手,直接相量计算 cos ⁡ θ = P U I \cos \theta=\frac{P}{UI} cosθ=UIP

ω = 2 π f = 100 π \omega=2\pi f=100\pi ω=2πf=100π

为方便乘法运算,设 U ˙ = 220 ∠ 0 ° \dot U=220∠0° U˙=2200°为没有虚部的复数即一实数,只需求出 I ˙ \dot I I˙电动机

对电容: I ˙ C = j ω C U ˙ = 3 × 1 0 − 3 π j U ˙ = = 3 × 1 0 − 3 × π × 220 j = 2.07 j \dot I_C=j\omega C\dot U=3\times 10^{-3}\pi j\dot U==3\times 10^{-3}\times \pi\times 220j=2.07j I˙C=jωCU˙=3×103πjU˙==3×103×π×220j=2.07j

对电动机:

P D = U I D cos ⁡ θ P_D=UI_D\cos\theta PD=UIDcosθ

I D = P D U cos ⁡ θ = 1000 220 × 0.8 = 5.68 I_D=\frac{P_D}{U\cos\theta}=\frac{1000}{220\times 0.8}=5.68 ID=UcosθPD=220×0.81000=5.68

因为电动机的功率因数为感性那么电压超前电流, θ D > 0 \theta_D>0 θD>0

θ D = arccos ⁡ 0.8 = 36.87 ° = ϕ U − ϕ I D \theta_D=\arccos 0.8=36.87°=\phi_U-\phi_{I_D} θD=arccos0.8=36.87°=ϕUϕID

ϕ U = 0 \phi_U=0 ϕU=0 ϕ I D = − 36.87 ° \phi_{I_D}=-36.87° ϕID=36.87°

I ˙ D = 5.68 ∠ − 36.87 ° = 4.54 − 3.41 j \dot I_D=5.68∠-36.87°=4.54-3.41j I˙D=5.6836.87°=4.543.41j

K C L KCL KCL定律

I ˙ = I ˙ D + I ˙ C = = 4.54 − 1.34 j = 4.5 4 2 + 1.3 4 2 ∠ arctan ⁡ − 1.34 4.54 = 4.73 ∠ − 16.44 ° \dot I=\dot I_D+\dot I_C==4.54-1.34j=\sqrt{4.54^2+1.34^2}∠\arctan\frac{-1.34}{4.54}=4.73∠-16.44° I˙=I˙D+I˙C==4.541.34j=4.542+1.342 arctan4.541.34=4.7316.44°

U ˙ = 220 ∠ 0 ° \dot U=220∠0° U˙=2200°

θ = ϕ U − ϕ I = 16.44 ° \theta=\phi_U-\phi_I=16.44° θ=ϕUϕI=16.44°

cos ⁡ θ = cos ⁡ 16.44 ° = 0.96 \cos \theta=\cos 16.44°=0.96 cosθ=cos16.44°=0.96

无功功率 Q = U I sin ⁡ θ Q=UI\sin \theta Q=UIsinθ

无功功率就是在没有消耗功率,只有交换功率的时候,交换功率的最大值

视在功率 S = U I S=UI S=UI

实际上电压表和电流表示数的乘积,单位 V A VA VA,伏安,注意不是瓦特

RLC元件的功率计算

元件 θ = ϕ u − ϕ i \theta=\phi_u-\phi_i θ=ϕuϕi平均功率 P P P无功功率 Q Q Q是否消耗功率是否存储功率
R0 U I cos ⁡ 0 = U I UI\cos 0=UI UIcos0=UI U I sin ⁡ 0 = 0 UI \sin 0=0 UIsin0=0
L π 2 \frac{\pi}{2} 2π U I cos ⁡ π 2 = 0 UI \cos \frac{\pi}{2}=0 UIcos2π=0 U I sin ⁡ π 2 = U I UI\sin \frac{\pi}{2}=UI UIsin2π=UI
C − π 2 -\frac{\pi}{2} 2π U I cos ⁡ − π 2 = 0 UI \cos -\frac{\pi}{2}=0 UIcos2π=0 U I sin ⁡ − π 2 = − U I UI\sin -\frac{\pi}{2}=-UI UIsin2π=UI

复功率 S ~ = P + j Q = S e j θ \widetilde S=P+jQ=Se^{j\theta} S =P+jQ=Sejθ

其中P为平均功率 P = U I cos ⁡ θ P=UI\cos \theta P=UIcosθ

Q为无功功率 Q = U I sin ⁡ θ Q=UI\sin\theta Q=UIsinθ
S ~ = P + j Q = U I cos ⁡ θ + j U I sin ⁡ θ = U I e j θ = U I e j ( ϕ U − ϕ I ) = U e j ϕ U I e − j ϕ I = U ˙ I ˙ ∗ \begin{aligned} \widetilde S&=P+jQ\\ &=UI\cos\theta+jUI\sin\theta\\ &=UIe^{j\theta}\\ &=UIe^{j(\phi_U-\phi_I)}\\ &=Ue^{j\phi_U}Ie^{-j\phi_I}\\ &=\dot U\dot I^* \end{aligned} S =P+jQ=UIcosθ+jUIsinθ=UIejθ=UIej(ϕUϕI)=UejϕUIejϕI=U˙I˙

I ˙ ∗ \dot I^* I˙为电流相量的共轭相量

I ˙ = I e j ϕ I = I cos ⁡ ϕ I + j I sin ⁡ ϕ I \dot I=Ie^{j\phi_I}=I\cos\phi_I+jI\sin \phi_I I˙=IejϕI=IcosϕI+jIsinϕI

I ˙ ∗ = I e − j ϕ I = I cos ⁡ − ϕ I + j I sin ⁡ − ϕ I = I cos ⁡ ϕ I − j I sin ⁡ ϕ I \dot I^*=Ie^{-j\phi_I}=I\cos-\phi_I+jI\sin -\phi_I=I\cos\phi_I-jI\sin \phi_I I˙=IejϕI=IcosϕI+jIsinϕI=IcosϕIjIsinϕI

两者实部相同,虚部相反

复功率与阻抗关系 S ~ = U ˙ I ˙ ∗ = Z I ˙ I ˙ ∗ = Z I 2 = ∣ Z ∣ I 2 ∠ θ Z = I 2 ( R + j X ) \widetilde S=\dot U\dot I^*=Z\dot I\dot I^*=ZI^2=|Z|I^2\angle \theta_Z=I^2(R+jX) S =U˙I˙=ZI˙I˙=ZI2=ZI2θZ=I2(R+jX)

其中R为电路中纯电阻,X为电抗,容抗和感抗的叠加

P = I 2 R P=I^2R P=I2R为有功功率(纯电阻消耗功率)

Q = I 2 X Q=I^2X Q=I2X为无功功率(电感和电容的功率交换作用)

S = I 2 ∣ Z ∣ S=I^2|Z| S=I2Z为视在功率

复功率与导纳的关系 S ~ = U ˙ I ˙ ∗ = U ˙ ( U ˙ Y ) ∗ = U ˙ U ˙ ∗ Y ∗ = U 2 Y ∗ = U 2 ∣ Y ∣ ∠ − θ Y \widetilde S=\dot U\dot I^*=\dot U(\dot U Y)^*=\dot U\dot U^* Y^*=U^2Y^*=U^2|Y|\angle -\theta _Y S =U˙I˙=U˙(U˙Y)=U˙U˙Y=U2Y=U2YθY

Y = I ˙ U ˙ = G + j B = ∣ Y ∣ ∠ θ Y Y=\frac{\dot I}{\dot U}=G+jB=|Y|\angle \theta _Y Y=U˙I˙=G+jB=YθY


S ~ = U 2 ∣ Y ∣ ∠ − θ Y = U 2 ( G − j B ) \widetilde S=U^2|Y|\angle -\theta _Y=U^2(G-jB) S =U2YθY=U2(GjB)

其中G为纯电阻电导,B为电纳,是容纳和感纳的叠加

P = U 2 R = U 2 G P=\frac{U^2}{R}=U^2G P=RU2=U2G为有功功率

Q = − U 2 B Q=-U^2B Q=U2B为无功功率

S = U 2 ∣ Y ∣ S=U^2|Y| S=U2Y为视在功率

复功率的计算

首先求 U ˙ \dot U U˙,可以将右侧所有RLC等效成一个阻抗

Z 1 = 10 + 25 j Z_1=10+25j Z1=10+25j

Z 2 = 5 − 15 j Z_2=5-15j Z2=515j

Z = Z 1 Z 2 Z 1 + Z 2 = 18.84 + 14.23 j = 23.61 ∠ 37.07 ° Z=\frac{Z_1Z_2}{Z_1+Z_2}=18.84+14.23j=23.61\angle37.07° Z=Z1+Z2Z1Z2=18.84+14.23j=23.6137.07°

U ˙ = Z I ˙ = 236.1 ∠ 37.07 ° \dot U=Z\dot I=236.1\angle 37.07° U˙=ZI˙=236.137.07°

S ~ = U ˙ I ˙ ∗ = 236.1 ∠ 37.07 ° × 10 ∠ − 0 ° = 2361 ∠ 37.07 ° \widetilde S=\dot U\dot I^*=236.1\angle 37.07°\times 10\angle-0°=2361\angle 37.07° S =U˙I˙=236.137.07°×100°=236137.07°

法一

两个支路的电压都是 U ˙ \dot U U˙故只需求出两之路的导纳

元件 U ˙ − I ˙ \dot U-\dot I U˙I˙关系阻抗(应用于网孔电流法)导纳(应用于结点电压法)
R U ˙ = R I ˙ \dot U=R\dot I U˙=RI˙ Z R = R Z_R=R ZR=R Y R = 1 R Y_R=\frac{1}{R} YR=R1
L U ˙ = j ω L I ˙ \dot U=j\omega L\dot I U˙=jωLI˙ Z L = j ω L Z_L=j\omega L ZL=jωL Y L = 1 j ω L = − j ω L Y_L=\frac{1}{j\omega L}=-\frac{j}{\omega L} YL=jωL1=ωLj
C U ˙ = − j 1 ω C I ˙ \dot U=-j\frac{1}{\omega C}\dot I U˙=jωC1I˙ Z C = − j ω C Z_C=-\frac{j}{\omega C} ZC=ωCj Y C = j ω C Y_C=j\omega C YC=jωC

Y 1 = 1 Z 1 = 1 10 + 25 j = 0.0138 − 0.0345 j = 0.0372 ∠ − 68 ° Y_1=\frac{1}{Z_1}=\frac{1}{10+25j}=0.0138-0.0345j=0.0372\angle -68° Y1=Z11=10+25j1=0.01380.0345j=0.037268°

S ~ 1 = U 2 Y 1 ∗ = 236. 1 2 × 0.0372 ∠ 68 ° = 2073.65 ∠ 68 ° = 776.79 + 1922.65 j \widetilde S_1=U^2Y_1^*=236.1^2\times 0.0372\angle 68°=2073.65\angle 68°=776.79+1922.65j S 1=U2Y1=236.12×0.037268°=2073.6568°=776.79+1922.65j

Y 2 = 1 Z 2 = 1 5 − 15 j = 0.02 + 0.06 j = 0.063 ∠ 71.57 ° Y_2=\frac{1}{Z_2}=\frac{1}{5-15j}=0.02+0.06j=0.063\angle71.57° Y2=Z21=515j1=0.02+0.06j=0.06371.57°

S ~ 2 = U 2 Y 2 ∗ = 236. 1 2 × 0.063 ∠ − 71.57 ° = 3511.82 ∠ − 71.57 ° = 1109.74 − 3331.70 j \widetilde S_2=U^2Y_2^*=236.1^2\times 0.063\angle -71.57°=3511.82\angle -71.57°=1109.74-3331.70j S 2=U2Y2=236.12×0.06371.57°=3511.8271.57°=1109.743331.70j

法二

分别求出 I ˙ 1 , I ˙ 2 \dot I_1,\dot I_2 I˙1,I˙2

根据并联电路分流特点

I ˙ 1 = I ˙ × Z 2 Z 1 + Z 2 = I ˙ × 5 − 15 j 15 + 10 j = 8.77 ∠ − 105.3 ° \dot I_1=\dot I\times \frac{Z_2}{Z_1+Z_2}=\dot I\times \frac{5-15j}{15+10j}=8.77∠-105.3° I˙1=I˙×Z1+Z2Z2=I˙×15+10j515j=8.77105.3°

I ˙ 2 = I ˙ − I ˙ 1 = 14.94 ∠ 34.5 ° \dot I_2=\dot I-\dot I_1=14.94\angle 34.5° I˙2=I˙I˙1=14.9434.5°

S ~ 1 = U ˙ I ˙ 1 ∗ = 236.1 ∠ 37.07 ° × 8.77 ∠ 105.3 ° = 2070.60 ∠ 142.37 ° \widetilde S_1=\dot U\dot I_1^*=236.1\angle 37.07°\times8.77∠105.3°=2070.60\angle 142.37° S 1=U˙I˙1=236.137.07°×8.77105.3°=2070.60142.37°

S ~ 2 = U ˙ I ˙ 2 ∗ = 236.1 ∠ 37.07 ° × 14.94 ∠ − 34.5 ° = 3527.334 ∠ 2.53 ° \widetilde S_2=\dot U\dot I_2^*=236.1\angle 37.07°\times14.94\angle-34.5°=3527.334\angle 2.53° S 2=U˙I˙2=236.137.07°×14.9434.5°=3527.3342.53°

最大功率传输定理:阻同抗反

Z S = R S + j X S Z_S=R_S+jX_S ZS=RS+jXS均为定值

1.在对外电路没有限制的时候, Z L = R L + j X L Z_L=R_L+jX_L ZL=RL+jXL其中 R L , X L R_L,X_L RL,XL为未知数
P = I 2 R L = R L U S 2 Z 2 = R L U S 2 ( R L + R S ) 2 + ( X L + X S ) 2 P=I^2R_L=R_L\frac{U_S^2}{Z^2}=R_L\frac{U_S^2}{(R_L+R_S)^2+(X_L+X_S)^2} P=I2RL=RLZ2US2=RL(RL+RS)2+(XL+XS)2US2

f ( x , y ) = x ( x + a ) 2 + ( y + b ) 2 其 中 x 代 表 R L 可 以 取 任 意 非 负 数 , y 代 表 X L 可 以 取 任 意 实 数 , a > = 0 下 求 f ( x , y ) 函 数 的 最 小 值 f(x,y)=\frac{x}{(x+a)^2+(y+b)^2}\\其中x代表R_L可以取任意非负数,y代表X_L可以取任意实数,a>=0\\ 下求f(x,y)函数的最小值 f(x,y)=(x+a)2+(y+b)2xxRL,yXL,a>=0f(x,y)

显然分母越小越好, y = − b y=-b y=b时分母相对于自变量y来说最小,即外电路电感应取 X L = − X S X_L=-X_S XL=XS

此时函数退化为
f ( x ) = x ( x + a ) 2 f ′ ( x ) = a − x ( x + a ) 3 f(x)=\frac{x}{(x+a)^2}\\ f'(x)=\frac{a-x}{(x+a)^3} f(x)=(x+a)2xf(x)=(x+a)3ax
因此 x = a x=a x=a f ( x ) f(x) f(x)有极大值

因此当外电路满足
{ R L = R S X L = − X S \begin{cases} R_L=R_S\\ X_L=-X_S \end{cases} {RL=RSXL=XS
外电路功率取得最大值 P m a x = U S 2 4 R S P_{max}=\frac{U_S^2}{4R_S} Pmax=4RSUS2

2.如果限制外电路 Z = ∣ Z ∣ ∠ θ Z=|Z|\angle \theta Z=Zθ,其中 ∣ Z ∣ |Z| Z可变,$\theta $不变,求此时外电路最大功率
P = I 2 R L = R L U S 2 Z 2 = R L U S 2 ( R L + R S ) 2 + ( X L + X S ) 2 = U S 2 ∣ Z ∣ cos ⁡ θ ( ∣ Z ∣ cos ⁡ θ + R S ) 2 + ( ∣ Z ∣ sin ⁡ θ + X S ) 2 P=I^2R_L=R_L\frac{U_S^2}{Z^2}=R_L\frac{U_S^2}{(R_L+R_S)^2+(X_L+X_S)^2}\\ =\frac{U_S^2|Z|\cos \theta}{(|Z|\cos\theta+R_S)^2+(|Z|\sin \theta+X_S)^2}\\ P=I2RL=RLZ2US2=RL(RL+RS)2+(XL+XS)2US2=(Zcosθ+RS)2+(Zsinθ+XS)2US2Zcosθ

f ( x ) = x cos ⁡ θ ( x cos ⁡ θ + a ) 2 + ( x sin ⁡ θ + b ) 2 = cos ⁡ θ x + a 2 + b 2 x + 2 a cos ⁡ θ + 2 b sin ⁡ θ ≤ cos ⁡ θ 2 a 2 + b 2 + 2 a cos ⁡ θ + 2 b sin ⁡ θ f(x)=\frac{x\cos \theta}{(x\cos\theta+a)^2+(x\sin\theta+b)^2}=\frac{\cos \theta}{x+\frac{a^2+b^2}{x}+2a\cos\theta+2b\sin\theta}≤\frac{\cos\theta}{2\sqrt{a^2+b^2}+2a\cos\theta+2b\sin\theta}\\ f(x)=(xcosθ+a)2+(xsinθ+b)2xcosθ=x+xa2+b2+2acosθ+2bsinθcosθ2a2+b2 +2acosθ+2bsinθcosθ

当且仅当 x = a 2 + b 2 x x=\frac{a^2+b^2}{x} x=xa2+b2 x = a 2 + b 2 x=\sqrt{a^2+b^2} x=a2+b2 取等号

∣ Z L ∣ = R S 2 + X S 2 = ∣ Z S ∣ |Z_L|=\sqrt{R_S^2+X_S^2}=|Z_S| ZL=RS2+XS2 =ZS外电路有最大功率 P m a x = U S 2 cos ⁡ θ 2 ∣ Z L ∣ + 2 R S cos ⁡ θ + 2 X S sin ⁡ θ P_{max}=\frac{U_S^2\cos\theta}{2|Z_L|+2R_S\cos\theta+2X_S\sin\theta} Pmax=2ZL+2RScosθ+2XSsinθUS2cosθ

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰球球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值