阻抗和导纳
阻抗和导纳的概念以及其线性变换是一端口正弦稳态电路分析的重要内容。记如下一端口的电压和电流分别为 U = U ∠ Φ u U=U∠Φ_u U=U∠Φu 和 I = I ∠ Φ i I=I∠Φ_i I=I∠Φi
则U与I的比值即为阻抗
Z = U ⃗ I ⃗ = U I ∠ ( Φ u − Φ i ) = ∣ Z ∣ ∠ Φ z Z=\frac{\vec{U}}{\vec{I}}=\frac{U}{I}\angle{(Φ_u-Φ_i)}=|Z|∠Φ_z Z=IU=IU∠(Φu−Φi)=∣Z∣∠Φz
由此,Z是一个复数,称作复阻抗, ∣ Z ∣ = U I |Z|=\frac{U}{I} ∣Z∣=IU为阻抗模,辐角 Φ z = Φ u − Φ i Φ_z=Φ_u-Φ_i Φz=Φu−Φi为阻抗角。代数形式如下:
Z = R + j X Z=R+jX Z=R+jX
因此,电路可以用R和jX串联替代(如上第二个图)。
此时,若X>0,即Φz>0,电路表现为感性,可以用等效电感代替,有:
L e q w = X L_{eq}w=X Leqw=X
若X<0,即Φz<0,电路表现为容性,可以用等效电容代替,有:
1 C e q w = ∣ X ∣ \frac{1}{C_{eq}w}=|X| Ceqw1=∣X∣
同理可得相应的导纳关系
Y = I ⃗ U ⃗ = I U ∠ ( Φ i − Φ u ) Y=\frac{\vec{I}}{\vec{U}}=\frac{I}{U}∠(Φ_i-Φ_u) Y=UI=UI∠(Φi−Φu)
代数形式:
Y = G + j B Y=G+jB Y=G+jB
G>0,即ΦY>0,为容性导纳,B可以用等效电容代替:
C e q = B w C_{eq}=\frac{B}{w} Ceq=wB
G<0,即ΦY<0,为感性导纳,B可以用等效电感代替:
L e q = 1 ∣ B ∣ w L_{eq}=\frac{1}{|B|w} Leq=∣B∣w1
此外有:
φ z = 0 φ_z=0 φz=0 | φ Y = 0 φ_Y=0 φY=0 |
---|---|
Z R = R Z_R=R ZR=R | Y G = G Y_G=G YG=G |
φ z = 90 ° φ_z=90° φz=90° | φ Y = − 90 ° φ_Y=-90° φY=−90° |
---|---|
Z L = j w |