[电路笔记]正弦稳态电路分析

本文详细介绍了正弦稳态电路中的阻抗和导纳概念,通过阻抗三角形解析电路的有功、无功和视在功率。讨论了一端口功率分析,包括含源电路的功率因数,以及如何利用戴维宁等效电路求解最大功率传输条件。内容涵盖KCL、KVL定理和多种分析方法。
摘要由CSDN通过智能技术生成

阻抗和导纳

阻抗和导纳的概念以及其线性变换是一端口正弦稳态电路分析的重要内容。记如下一端口的电压和电流分别为 U = U ∠ Φ u U=U∠Φ_u U=UΦu I = I ∠ Φ i I=I∠Φ_i I=IΦi
在这里插入图片描述
则U与I的比值即为阻抗
Z = U ⃗ I ⃗ = U I ∠ ( Φ u − Φ i ) = ∣ Z ∣ ∠ Φ z Z=\frac{\vec{U}}{\vec{I}}=\frac{U}{I}\angle{(Φ_u-Φ_i)}=|Z|∠Φ_z Z=I U =IU(ΦuΦi)=ZΦz
由此,Z是一个复数,称作复阻抗, ∣ Z ∣ = U I |Z|=\frac{U}{I} Z=IU为阻抗模,辐角 Φ z = Φ u − Φ i Φ_z=Φ_u-Φ_i Φz=ΦuΦi为阻抗角。代数形式如下:
Z = R + j X Z=R+jX Z=R+jX
在这里插入图片描述
因此,电路可以用R和jX串联替代(如上第二个图)。
此时,若X>0,即Φz>0,电路表现为感性,可以用等效电感代替,有:
L e q w = X L_{eq}w=X Leqw=X
若X<0,即Φz<0,电路表现为容性,可以用等效电容代替,有:
1 C e q w = ∣ X ∣ \frac{1}{C_{eq}w}=|X| Ceqw1=X

同理可得相应的导纳关系
Y = I ⃗ U ⃗ = I U ∠ ( Φ i − Φ u ) Y=\frac{\vec{I}}{\vec{U}}=\frac{I}{U}∠(Φ_i-Φ_u) Y=U I =UI(ΦiΦu)
代数形式:
Y = G + j B Y=G+jB Y=G+jB
在这里插入图片描述
G>0,即ΦY>0,为容性导纳,B可以用等效电容代替:
C e q = B w C_{eq}=\frac{B}{w} Ceq=wB
G<0,即ΦY<0,为感性导纳,B可以用等效电感代替:
L e q = 1 ∣ B ∣ w L_{eq}=\frac{1}{|B|w} Leq=Bw1

此外有:

φ z = 0 φ_z=0 φz=0 φ Y = 0 φ_Y=0 φY=0
Z R = R Z_R=R ZR=R Y G = G Y_G=G YG=G
φ z = 90 ° φ_z=90° φz=90° φ Y = − 90 ° φ_Y=-90° φY=90°
Z L = j w
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值