【转载】轻松学Pytorch-Pytorch可视化

在这里插入图片描述
在这里插入图片描述

import numpy as np
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter(log_dir='./log')
flag = 0
if flag :
    for x in range(100):
        
        # 把x*2的数据加入标签y=2x的曲线
        writer.add_scalar(tag='y=2x',scalar_value=x*2,global_step=x)
        
        # 把2**x的数据加入标签y=pow(2,x)的曲线
        writer.add_scalar(tag='y=pow(2,x)',scalar_value=2**x,global_step=x)
        
        # 把x*sin(x)和x*cos(x)的数据加入data/scalar_group的标签组中,即
        # 两个曲线绘制在一张图中
        writer.add_scalars(tag='data/scalar_group',{'xsinx': x*np.sin(x),
                                                'xcosx':x*np.cos(x)}, x)

在这里插入图片描述
在这里插入图片描述
示例代码:

import numpy as np
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter(log_dir='./log')
flag = 0
if flag :
    for x in range(10):
        data_1 = np.arange(1000)
        data_2 = np.random.normal(size=1000)

        writer.add_histogram("data1",data_1,x)
        writer.add_histogram('data2',data_2,x)

在这里插入图片描述
在这里插入图片描述

from torchvision import datasets
import torchvision.transforms as transforms
from torch.utils.data.sampler import SubsetRandomSampler

# number of subprocesses to use for data loading
num_workers = 0
# 每批加载16张图片
batch_size = 16
# percentage of training set to use as validation
valid_size = 0.2

# 将数据转换为torch.FloatTensor,并标准化。
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

# 选择训练集与测试集的数据
train_data = datasets.CIFAR10('data', train=True,
                              download=True, transform=transform)
test_data = datasets.CIFAR10('data', train=False,
                             download=True, transform=transform)

# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]

# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)

# prepare data loaders (combine dataset and sampler)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,sampler=train_sampler, num_workers=num_workers)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers)

# 对训练输入数据进行可视化
b_img,b_label=iter(train_data).next()
iter = 1
for img in b_img:
    # 乘以偏差
    img = img.mul(torch.Tensor(np.array([0.5, 0.5, 0.5]).reshape(-1,1,1)))
    
    # 加上均值
    img = img.add(torch.Tensor(np.array([0.5, 0.5, 0.5]).reshape(-1,1,1)))
    
    # 加入图像数据
    writer.add_image('input',img, iter)
    iter += 1

可以拖动图片上方的红线,就可以看到不同step的图像了
在这里插入图片描述
对于多张图片的可以使用torchvision.utils.make_grid API把多张图片拼到一张图中方便查看。(make_grid详细参数参考make_grid帮助文档)

修改以上代码:

#导入make_grid
from torchvision.utils import make_grid

# 对训练输入数据进行可视化
b_img,b_label=iter(train_data).next()

# b_img:batch image,4:把图像分成4行 ,normalize=True图像进行了标准化
gimg=make_grid(b_img,4,normalize=True)

# 加入图像数据
writer.add_image("data_input",gimg,1)

效果图:
在这里插入图片描述
使用图像可视化对模型输出特征图进行可视化
这里我们需要用到pytorch的hook函数机制,通过注册hook函数获取特征图并进行可视化。
示例代码(使用cifar10分类卷积网络训练代码):

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 卷积层 (32x32x3的图像)
        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
        # 卷积层(16x16x16)
        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
        # 卷积层(8x8x32)
        self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
        # 最大池化层
        self.pool = nn.MaxPool2d(2, 2)
        # linear layer (64 * 4 * 4 -> 500)
        self.fc1 = nn.Linear(64 * 4 * 4, 500)
        # linear layer (500 -> 10)
        self.fc2 = nn.Linear(500, 10)
        # dropout层 (p=0.3)
        self.dropout = nn.Dropout(0.3)

    def forward(self, x):
        # add sequence of convolutional and max pooling layers
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        # flatten image input
        x = x.view(-1, 64 * 4 * 4)
        # add dropout layer
        x = self.dropout(x)
        # add 1st hidden layer, with relu activation function
        x = F.relu(self.fc1(x))
        # add dropout layer
        x = self.dropout(x)
        # add 2nd hidden layer, with relu activation function
        x = self.fc2(x)
        return x


# create a complete CNN
model = Net()
print(model)

# 定义hook函数
conv_fmap_ls = []
def conv1_fmap_hook(model,input,output):
    conv_fmap_ls.append(output)

# 注册hook函数,作为示例只对conv1的输出进行记录
model.conv1.register_forward_hook(conv1_fmap_hook)

# 使用GPU
if train_on_gpu:
    model.cuda()

import torch.optim as optim

# 使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 使用随机梯度下降,学习率lr=0.01
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型的次数
n_epochs = 30

valid_loss_min = np.Inf  # track change in validation loss

iter = 0
for epoch in range(1, n_epochs + 1):

    # keep track of training and validation loss
    train_loss = 0.0
    valid_loss = 0.0

    ###################
    # 训练集的模型 #
    ###################
    model.train()
    for data, target in train_loader:
        iter += 1
        # move tensors to GPU if CUDA is available
        if train_on_gpu:
            data, target = data.cuda(), target.cuda()
        # clear the gradients of all optimized variables
        optimizer.zero_grad()
        # forward pass: compute predicted outputs by passing inputs to the model
        output = model(data)
        # calculate the batch loss
        loss = criterion(output, target)
        # backward pass: compute gradient of the loss with respect to model parameters
        loss.backward()
        # perform a single optimization step (parameter update)
        optimizer.step()
        # update training loss
        train_loss += loss.item() * data.size(0)

        #记录feature map
        if len(conv_fmap_ls)>0:
            # 取出conv1的输出
            fm = conv_fmap_ls[0]
            
            #增维,(batch_num,output_channel,width,height)->(batch_num,output_channel,1,width,height)
            fm = fm.unsqueeze(2)
            b,output_c,c,w,h = fm.size()
            
            #改变形状
            fm = fm.view(-1,c,w,h)
            
            # 拼图
            gm = make_grid(fm, nrow=16, normalize=True)
            
            # 添加图像记录
            writer.add_image("conv1_feature_map", gm, iter)
            conv_fmap_ls.clear()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值