矩阵代数基础

3、向量空间、线性映射与Hilbert空间

3.4、内积空间、赋范空间与Hilbert空间

Hilbert空间

定义  一个相对于范数完备即满足范数收敛 lim ⁡ n → ∞ ∣ ∣ v n ∣ ∣ → ∣ ∣ v ∣ ∣ \lim_{n\rightarrow \infty} ||v_n|| \rightarrow ||v|| limnvnv的赋范向量空间V称为Hilbert空间。

6、矩阵的性能指标

6.4、矩阵的迹

定义   n × n n \times n n×n矩阵A的对角元素之和称为A的迹,记作 t r ( A ) tr(A) tr(A),即有:
t r ( A ) = a 11 + ⋯ + a n n = ∑ i = 1 n a i i tr(A)=a_{11}+ \cdots +a_{nn}= \sum_{i=1}^n a_{ii} tr(A)=a11++ann=i=1naii

非正方矩阵无迹的定义。
1、关于迹的等式
(1)若A和B均为 n × n n \times n n×n矩阵,则 t r ( A ± B ) = t r ( A ) ± t r ( B ) tr(A \pm B)=tr(A) \pm tr(B) tr(A±B)=tr(A)±tr(B)
(2)若A和B均为 n × n n \times n n×n矩阵,并且 c 1 c_1 c1 c 2 c_2 c2为常数,则 t r ( c 1 A ± c 2 B ) = c 1 t r ( A ) ± c 2 t r ( B ) tr(c_1A \pm c_2B)=c_1tr(A) \pm c_2tr(B) tr(c1A±c2B)=c1tr(A)±c2tr(B)。特别地,若 B = O B=O B=O,则 t r ( c A ) = c t r ( A ) tr(cA)=ctr(A) tr(cA)=ctr(A)
(3)矩阵A的转置、复数共轭和复共轭转置的迹分别为 t r ( A T ) = t r ( A ) tr(A^T)=tr(A) tr(AT)=tr(A) t r ( A ∗ ) = [ t r ( A ) ] ∗ tr(A^*)=[tr(A)]^* tr(A)=[tr(A)] t r ( A H ) = [ t r ( A ) ] ∗ tr(A^H)=[tr(A)]^* tr(AH)=[tr(A)]
(4)若 A ∈ C m × n A \in C^{m \times n} ACm×n B ∈ C m × n B \in C^{m \times n} BCm×n,则 t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)
(5)若A是一个 m × n m \times n m×n矩阵,则 t r ( A H A ) = 0 ⟺ A = O m × n tr(A^HA)=0 \Longleftrightarrow A=O^{m \times n} tr(AHA)=0A=Om×n(零矩阵)。
(6) x H A x = t r ( A x x H ) x^HAx=tr(Axx^H) xHAx=tr(AxxH) y H x = t r ( x y H ) y^Hx=tr(xy^H) yHx=tr(xyH)
(7)迹等于特征值之和,即 t r ( A ) = λ 1 + ⋯ + λ n tr(A)=\lambda_1+\cdots +\lambda_n tr(A)=λ1++λn
(8)分块矩阵的迹满足
t r [ A B C D ] = t r ( A ) + t r ( D ) tr \begin{bmatrix}A & B \\ C & D\\ \end{bmatrix}=tr(A)+tr(D) tr[ACBD]=tr(A)+tr(D)

式中, A ∈ C m × n A \in C^{m \times n} ACm×n B ∈ C m × n B \in C^{m \times n} BCm×n C ∈ C n × m C \in C^{n \times m} CCn×m D ∈ C n × n D \in C^{n \times n} DCn×n
(9)对于任何正整数k,有
t r ( A k ) = ∑ i = 1 n λ i k tr(A^k)=\sum_{i=1}^n \lambda_i^k tr(Ak)=i=1nλik

2、关于迹的不等式
(1)对一个复矩阵 A ∈ C m × n A \in C^{m \times n} ACm×n,有 t r ( A H A ) = t r ( A A H ) ⩾ 0 tr(A^HA)=tr(AA^H)\geqslant 0 tr(AHA)=tr(AAH)0
(2)Schur不等式 t r ( A 2 ) ⩾ t r ( A T A ) tr(A^2) \geqslant tr(A^TA) tr(A2)tr(ATA)
(3)若A、B均为 m × n m \times n m×n矩阵,则
t r [ ( A T B ) 2 ] ⩽ t r ( A T A ) t r ( B T B ) tr[(A^TB)^2] \leqslant tr(A^TA)tr(B^TB) tr[(ATB)2]tr(ATA)tr(BTB)

(4) t r [ ( A + B ) ( A + B ) T ] ⩽ 2 [ t r ( A A T ) + t r ( B B T ) ] tr[(A+B)(A+B)^T] \leqslant 2[tr(AA^T)+tr(BB^T)] tr[(A+B)(A+B)T]2[tr(AAT)+tr(BBT)]
(5)若A和B为 m × m m \times m m×m对称矩阵,则 t r ( A B ) ⩽ 1 2 t r ( A 2 + B 2 ) tr(AB) \leqslant \frac{1}{2}tr(A^2+B^2) tr(AB)21tr(A2+B2)

6.5、矩阵的秩

定义  矩阵 A m × n A_{m \times n} Am×n的秩定义为该矩阵中线性无关的行或列的数目。
矩阵方程 A m × n x n × 1 = b m × 1 A_{m \times n}x_{n \times 1}=b_{m \times 1} Am×nxn×1=bm×1称为一致方程(consistent equation)

9、矩阵的直和与Hadamard积

9.1、矩阵的直和

9.2、Hadamard积

定义   m × n m \times n m×n矩阵 A = [ a i j ] A=[a_{ij}] A=[aij] m × n m \times n m×n矩阵 B = [ b i j ] B=[b_{ij}] B=[bij]的Hadamard积记作 A ∗ B A*B AB,它仍然是一个 m × n m \times n m×n矩阵,其元素定义为两个矩阵对应元素的乘积:
( A ∗ B ) i j = a i j b i j (A*B)_{ij}=a_{ij}b_{ij} (AB)ij=aijbij

即Hadamard积是一映射 R m × n × R m × n ↦ R m × n \R^{m \times n} \times \R^{m \times n}\mapsto \R^{m \times n} Rm×n×Rm×nRm×n
Hadamard积也称Schur积或者对应元素乘积。

12、稀疏表示与压缩感知

12.1、稀疏向量与稀疏表示

稀疏向量  一个含有大多数零元素的向量。
完备正交基  信号向量 y ∈ R m y \in \R^m yRm最多可分解为m个正交基(向量) g k ∈ R m , k = 1 , ⋯   , m g_k \in \R^m,k=1,\cdots,m gkRm,k=1,,m,这些正交基的集合。

12.3、稀疏编码

稀疏编码  给定一个m维shi’zhi

12.4、压缩感知的稀疏表示

压缩感知的两个基本性质:稀疏性和非相干性
(1)稀疏性表达的思想是:当使用合适的表示基 Ψ \Psi Ψ作为信号表示时,许多自然的信号和图像都是稀疏的或可压缩的。
(2)非相干性的基本思想是:当感知基 Φ \Phi Φ与表示基 Ψ \Psi Ψ不相干时,与感兴趣的自然信号和图像不同,采样或者感知的波形具有极为稠密的表达式,其中 α \alpha α是一个K-稀疏的系数向量。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值