本文学习来源是《矩阵分析与应用》
矩阵的二次型
任意一个正方矩阵A的二次型是一个实标量,以实矩阵为例:
这是变量x的二次型函数,我们称为矩阵A的二次型。
推而广之,若,且矩阵A的元素为,则二次型
若两个矩阵A,B满足对角线相等,且满足,则这两个矩阵的二次型就相等。
如:
具有相同的二次型。即:
即对于任何一个二次型函数
存在许多矩阵A,它们的二次型相同,但是,只有一个唯一的对称矩阵A满足,其元素为和,其中,。因此在讨论矩阵A的二次型时,通常都假定A为实对称矩阵或复共轭对称矩阵。
一个复共轭对称矩阵A称为:
- 正定矩阵,若二次型
- 半正定矩阵,若二次型
- 负定矩阵,若二次型
- 半负定矩阵,若二次型
- 不定矩阵,若二次型既可能取正值,也可能取负值。
例如:实对称矩阵
是正定的,因为二次型,仅时等式为0。
这里继续学习一个非负矩阵的概念。
设矩阵的元素为,若
即A的所有元素都是非负的,则称A为非负矩阵。
若A的所有元素都是正的,则称A为正矩阵。
非负矩阵和正矩阵分别用符号和简记,以下是正定矩阵和正矩阵之间的区别:
正定矩阵一定是正方的矩阵,但是正矩阵可以是非正方的。
正定矩阵A的定义为:,正矩阵的定义为:
正定矩阵的符号为:,正矩阵的符号为:
矩阵的迹
n*n矩阵A的对角元素之和称为A的迹,非正方矩阵没有迹。迹记作tr(A),即:
以下是关于迹的等式:
- 若A和B均为n*n的矩阵,则
- 若c是一个复常数或者实常数,则
- 若A和B均为n*n的矩阵,且和为常数,则
- 矩阵A的转置,复数共轭的迹为:
- 若A为m*n矩阵,B为n*m矩阵,则
- 若A,B均是一个m*m矩阵,且B非奇异,则
- 若A是一个m*n的矩阵,则
- 迹等于特征值之和,即