主要介绍几个基本概念
-
规范化参数:机器学习的模型拟合训练数据;
-
最小化误差:防止机器学习的模型与训练数据过度拟合;
-
范数:机器学习、深度学习等计算机领域内用的比较多的就是迭代过程中收敛性质的判断,一般迭代前后步骤的差值称为范数,用范数表示其大小。
常用的是二范数,差值越小表示越逼近实际值,可以认为达到要求的精度,收敛。范数本质是距离,存在的意义是为了实现比较
向量的范数
假设x是向量:
x = ( x 1 , x 2 , … , x n ) x=(x_1,x_2,…,x_n) x=(x1,x2,…,xn)
那么p-范数的计算公式如下:
∣ ∣ x ∣ ∣ p = ∑ i = 1 n ∣ x i ∣ p p \vert\vert x \vert\vert_p = \sqrt[p]{\sum_{i = 1}^{n}|x_i|^p} ∣∣x∣∣p=pi=1∑n∣xi∣p
x向量的各元素绝对值的p次方之和的p方根。
1) 0-范数:表示向量中非零元素的个数。
∣ ∣ x ∣ ∣ 0 = ∑ i = 1 n ∣ x i ∣ 0 0 \vert\vert x \vert\vert_0 = \sqrt[0]{\sum_{i = 1}^{n} \vert x_i\vert^0} ∣∣x∣∣0=