论文笔记 | Hardness-Aware Deep Metric Learning

出处:CVPR 2019
论文:https://arxiv.org/abs/1903.05503
代码:https://github.com/wzzheng/HDML

摘要:
本文介绍了一种Hardness-Aware Deep Metric Learning(HDML)框架。 大多数先前的度量学习方法采用困难负样本挖掘策略来减轻缺乏信息的训练样本。 然而,该挖掘策略仅利用训练数据的子集,这可能不足以全面地表征嵌入空间的全局几何。 为了解决这个问题,我们对嵌入进行线性插值,以自适应地操纵它们的困难水平,并为再循环训练生成相应的标签,从而可以充分利用所有样本中隐藏的信息,并且总是在适当的难度下训练度量。 我们的方法在广泛使用的CUB-200-2011,Cars196和斯坦福在线产品数据集上实现了极具竞争力的性能。

1 概述

深度度量学习方法旨在学习有效度量,以准确地衡量数据点之间的相似性。 他们利用深度神经网络构建从数据空间到嵌入空间的映射,使嵌入空间中的欧几里德距离能够反映数据点之间的实际语义距离,即类间样本之间的距离相对较大,而类内样本之间的距离相对较小。 最近已经提出了各种深度量度学习方法,并且已经证明在各种任务中具有很强的有效性,例如图像检索,人员重新识别和地理位置定位。

在本文中,我们提出了一种 HDML 框架作为解决方案。我们统一对训练集中的所有数据点进行采样,同时充分利用每个点中包含的信息。我们提议合成困难样本作为原始样本的补充,而不是仅使用原始样本进行训练。此外,我们根据模型的训练状态控制合成样品的难度水平,以便困难样本训练出更具稳健的模型。我们采用自适应线性插值方法来有效地操纵嵌入的困难水平。获得增强嵌入后,我们利用同时训练的发生器将它们映射回特征空间,同时保留标签和增强硬度。这些合成数据包含的信息比原始信息更多,可用作再循环训练的补充,如图1所示。我们提供消融研究,以证明HDML每个模块的有效性。

2 相关工作

Metric Learning:
Hard Negative Mining:

3 方法

3.1 Problem Formulation

x 代表 data space,y 代表 feature space, z 代表 embedding space

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值