原论文:DEEP METRIC LEARNING USING TRIPLET NETWORK
Triplet Network
1、四个问题
- 要解决什么问题?
- 实质上,Triplet Network是Siamese Network的一种延伸,要解决的问题与Siamese Network的基本一致。
- 与Siamese Network一样,适用于解决样本类别很多(或不确定),然而训练数据集的样本数又很少的情况(如人脸识别、人脸验证)。
- 用了什么办法解决?
- 思路:将图像映射到某个特征空间中,其中两幅图像输入CNN得到的特征向量之间的欧式距离即为相似度。
- 与Siamese Network不同的是,Triplet Network采用三个样本为一组:一个参考样本,一个同类样本,一个异类样本。
- 在contrastive loss的基础之上构建了一个新的loss函数,就是保持类内和类间距离有一个距离限制(margin)。
- 效果如何?
- 论文比较老了,是15年的,早就不是state-of-the-art的了。
- 在论文中给出的实验结果中,采用相似的CNN结构,使用triplet network的效果比siamese network好一些。
- 还存在什么问题?
- triplet network的训练是通过样本间的对比(类内/类间),而不是以往的通过标签(label)训练,前者相比于后者不一定能取得更好地效果。
2、论文概述
2.1、网络结构
- Tripelet Network由3个相同的前馈神经网络(彼此共享参数)组成。
- 每次输入三个样本,网络会输出两个值:候选样本与同类样本,候选样本与异类样本,在embedding层的特征向量的L2距离。
- 假设输入为: x x x,候选样本; x − x^- x−,异类样本; x + x^+ x+,同类样本。
- 一句话概括就是,这个网络对 x − x^- x−和 x + x^+ x+相对于 x x x的距离进行了编码。
2.2、训练
- d + d_+ d+和 d − d_- d−分别是正样本对和负样本对在embedding层特征向量的欧氏距离。为了方便使用概率表示,又将其输入softmax函数,计算公式如上图。
- 目标是最小化 d + d_+ d+,最大化 d − d_- d−,所以等价于令 L o s s ( d + , d − ) → 0 Loss(d_+, d-) \rightarrow 0 Loss(d+,d−)→0。