深度学习优化函数详解(6)-- adagrad

本文介绍了Adagrad这一自适应学习率优化算法,该算法能够针对不同参数动态调整学习率,加速深度学习模型训练过程中的收敛速度。通过公式推导及实验结果展示了Adagrad的工作原理及其在实际应用中的表现。
摘要由CSDN通过智能技术生成

深度学习优化函数详解系列目录
深度学习优化函数详解(0)– 线性回归问题
深度学习优化函数详解(1)– Gradient Descent 梯度下降法
深度学习优化函数详解(2)– SGD 随机梯度下降
深度学习优化函数详解(3)– mini-batch SGD 小批量随机梯度下降
深度学习优化函数详解(4)– momentum 动量法
深度学习优化函数详解(5)– Nesterov accelerated gradient (NAG)
深度学习优化函数详解(6)– adagrad

前面的一系列文章的优化算法有一个共同的特点,就是对于每一个参数都用相同的学习率进行更新。但是在实际应用中各个参数的重要性肯定是不一样的,所以我们对于不同的参数要动态的采取不同的学习率,让目标函数更快的收敛。
adagrad方法是将每一个参数的每一次迭代的梯度取平方累加再开方,用基础学习率除以这个数,来做学习率的动态更新。这个比较简单,直接上公式。

公式推导

无

实验

实验取 η=0.2,ϵ=1e−8

无

可以看出收敛速度的确是特别慢(在该数据集下),最重要的原因就是动态学习率处于一个单向的减小状态,最后减到近乎为0的状态。
实验源码:https://github.com/tsycnh/mlbasic/blob/master/p6%20adagrad.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值