深度学习优化函数详解系列目录
深度学习优化函数详解(0)– 线性回归问题
深度学习优化函数详解(1)– Gradient Descent 梯度下降法
深度学习优化函数详解(2)– SGD 随机梯度下降
深度学习优化函数详解(3)– mini-batch SGD 小批量随机梯度下降
深度学习优化函数详解(4)– momentum 动量法
深度学习优化函数详解(5)– Nesterov accelerated gradient (NAG)
深度学习优化函数详解(6)– adagrad
前面的一系列文章的优化算法有一个共同的特点,就是对于每一个参数都用相同的学习率进行更新。但是在实际应用中各个参数的重要性肯定是不一样的,所以我们对于不同的参数要动态的采取不同的学习率,让目标函数更快的收敛。
adagrad方法是将每一个参数的每一次迭代的梯度取平方累加再开方,用基础学习率除以这个数,来做学习率的动态更新。这个比较简单,直接上公式。
公式推导
实验
实验取 η=0.2,ϵ=1e−8
可以看出收敛速度的确是特别慢(在该数据集下),最重要的原因就是动态学习率处于一个单向的减小状态,最后减到近乎为0的状态。
实验源码:https://github.com/tsycnh/mlbasic/blob/master/p6%20adagrad.py