1224: ACM小组的古怪象棋
Description
ACM小组的Samsara和Staginner对中国象棋特别感兴趣,尤其对马(可能是因为这个棋子的走法比较多吧)的使用进行深入研究。今天他们又在 构思一个古怪的棋局:假如Samsara只有一个马了,而Staginner又只剩下一个将,两个棋子都在棋盘的一边,马不能出这一半棋盘的范围,另外这 一半棋盘的大小很奇特(n行m列)。Samsara想知道他的马最少需要跳几次才能吃掉Staginner的将(我们假定其不会移动)。当然这个光荣的任 务就落在了会编程的你的身上了。
Input
每组数据一行,分别为六个用空格分隔开的正整数n,m,x1,y1,x2,y2分别代表棋盘的大小n,m,以及将的坐标和马的坐标。(1<=x1,x2<=n<=20,1<=y1,y2<=m<=20,将和马的坐标不相同)
Output
输出对应也有若干行,请输出最少的移动步数,如果不能吃掉将则输出“-1”(不包括引号)。
Sample Input
8 8 5 1 4 5
Sample Output
3
BFS水题。。。第一次没有看到不能吃掉输出-1,WA了一次。。。
代码如下:
#include <cstdio>
#include <queue>
using namespace std;
typedef pair<int,int> P;
int dir[8][2] = {{1,-2},{2,-1},{2,1},{1,2},{-1,2},{-2,1},{-2,-1},{-1,-2}};
int sx,sy,ex,ey;
int d[25][25];
int n,m;
int bfs()
{
queue<P> que;
for(int i = 1;i <= n;i++){
for(int j = 1;j <= m;j++){
d[i][j] = -1;
}
}
que.push(P(sx,sy));
d[sx][sy] = 0;
while(que.size()){
P p = que.front();
que.pop();
if(p.first == ex && p.second == ey)
break;
for(int i = 0;i < 8;i++){
int nx = p.first + dir[i][0];
int ny = p.second + dir[i][1];
if(1 <= nx && nx <= 20 && 1 <= ny && ny <= 20 && d[nx][ny] == -1){
que.push(P(nx,ny));
d[nx][ny] = d[p.first][p.second] + 1;
}
}
}
return d[ex][ey];
}
int main()
{
while(scanf("%d %d %d %d %d %d",&n,&m,&sx,&sy,&ex,&ey) != EOF){
printf("%d\n",bfs());
}
return 0;
}