EPnP 算法 2

欢迎访问我的博客首页


7. 附录


7.1 数学期望与协方差矩阵


  设 Z 是离散型随机变量 X, Y 的函数 Z = g(X, Y)(g 是连续函数),那么,Z 是一个一维随机变量。假设离散型随机变量 (X, Y) 的分布律为 P { X = x i , Y = y i } = p i j P\{X = x_i, Y = y_i\} = p_{ij} P{X=xi,Y=yi}=pij,i,j = 1, 2, …。则有

E ( Z ) = E [ g ( X , Y ) ] = ∑ j = 1 ∞ ∑ i = 1 ∞ g ( x i , y i ) p i j (7.1.1) E(Z) = E[g(X, Y)] = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_i)p_{ij} \tag{7.1.1} E(Z)=E[g(X,Y)]=j=1i=1g(xi,yi)pij(7.1.1)

  设 n 维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1, X_2, \cdots, X_n) (X1,X2,,Xn) 的二阶混合中心距 c i j = C o v ( X i , X j ) = E { [ X i − E ( X i ) ] [ X j − E ( X j ) ] } c_{ij} = Cov(X_i, X_j) = E\{[X_i - E(X_i)] [X_j - E(X_j)]\} cij=Cov(Xi,Xj)=E{[XiE(Xi)][XjE(Xj)]},i,j = 1,2,…,n 都存在,则矩阵

C = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋮ c n 1 c n 2 ⋯ c n n ] (7.1.2) C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} \tag{7.1.2} C=c11c21cn1c12c22cn2c1nc2ncnn(7.1.2)

为 n 维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1, X_2, \cdots, X_n) (X1,X2,,Xn) 的协方差矩阵。由于 c i j = c j i ( i ≠ j ; i , j = 1 , 2 , . . . , n ) c_{ij} = c_{ji} (i \neq j; i, j = 1, 2, ..., n) cij=cji(i=j;i,j=1,2,...,n),所以这个矩阵是一个对称矩阵。

  一般,n 维随机变量的分布是不知道的,或者是太复杂,以致在数学上不易处理,因此在实际应用中协方差矩阵就显得重要了。

7.2 三维坐标的协方差矩阵


  有 n 个去质心的三维空间坐标 ( x i , y i , z i ) (x_i, y_i, z_i) (xi,yi,zi) i ∈ [ 1 , n ] i \in [1, n] i[1,n]。我们可以把这 n 个三维坐标看成三维随机变量 ( X , Y , Z ) (X, Y, Z) (X,Y,Z),其取值为

A = [ x ⃗ T y ⃗ T z ⃗ T ] = [ x 1 x 2 … x n y 1 y 2 … y n z 1 z 2 … z n ] (7.2.1) A = \begin{bmatrix} \vec x^T \\ \vec y^T \\ \vec z^T \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \\ z_1 & z_2 & \dots & z_n \end{bmatrix} \tag{7.2.1} A=x Ty Tz T=x1y1z1x2y2z2xnynzn(7.2.1)

因为 X 取 x i x_i xi 时 Y 取 y i y_i yi,Z 取 z i z_i zi,所以这三个随机变量不相互独立,任意两个随机变量也不相互独立。随机变量 X 与随机变量 Y 的协方差

C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } (7.2.2) Cov(X, Y) = E\{[X - E(X)] [Y - E(Y)]\} \tag{7.2.2} Cov(X,Y)=E{[XE(X)][YE(Y)]}(7.2.2)

因为去质心坐标的均值为 0,所以 E(X) = E(Y) = 0。于是公式 (7.2.2) 可以写成

C o v ( X , Y ) = E ( X Y ) (7.2.3) Cov(X, Y) = E(XY) \tag{7.2.3} Cov(X,Y)=E(XY)(7.2.3)

  根据公式 (7.1.1),公式 (7.2.3) 可以写成

C o v ( X , Y ) = ∑ i = 1 n x i y i 1 n = 1 n    x ⃗ T ⋅ y ⃗ (7.2.4) Cov(X, Y) = \sum_{i=1}^{n} x_i y_i \frac{1}{n} = \frac{1}{n} \; \vec x^T \cdot \vec y \tag{7.2.4} Cov(X,Y)=i=1nxiyin1=n1x Ty (7.2.4)

这是因为 X 和 Y 不相互独立:X 取 x i x_i xi 时 Y 取 y i y_i yi,且 X 在 n 个值 x 1 , x 2 , … , x n {x_1, x_2, \dots, x_n} x1,x2,,xn 的取值概率相等。同理, C o v ( X , Z ) = 1 n    x ⃗ T ⋅ z ⃗ Cov(X, Z) = \frac{1}{n} \; \vec x^T \cdot \vec z Cov(X,Z)=n1x Tz C o v ( Y , Z ) = 1 n    y ⃗ T ⋅ z ⃗ Cov(Y, Z) = \frac{1}{n} \; \vec y^T \cdot \vec z Cov(Y,Z)=n1y Tz

  根据公式 (7.1.2) 和公式 (7.2.4),三维随机变量 ( X , Y , Z ) (X, Y, Z) (X,Y,Z) 的协方差矩阵是

C = 1 n    A A T (7.2.5) C = \frac{1}{n} \; AA^T \tag{7.2.5} C=n1AAT(7.2.5)

7.3 齐次质心坐标的性质


  1. 已知 p w = ∑ i = 1 4 ( α i c i w ) {\bf p}^w = \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^w) pw=i=14(αiciw),证明 p c = ∑ i = 1 4 ( α i c i c ) {\bf p}^c = \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^c) pc=i=14(αicic)

  证明:假设世界坐标系到相机坐标系的变换是 ( R , t ⃗   ) (R, \vec t \,) (R,t ),于是 ∑ i = 1 4 ( α i c i c ) = ∑ i = 1 4 [ α i ( R c i w + t ⃗   ) ] = R ∑ i = 1 4 ( α i c i w ) + t ⃗ ∑ i = 1 4 α i = R p w + t ⃗ = p c \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^c) = \sum_{i = 1}^{4} [\alpha_i (R {\bf c}_i^w + \vec t \,)] = R \sum_{i = 1}^{4} (\alpha_i c_i^w) + \vec t \sum_{i = 1}^{4} \alpha_i = R {\bf p}^w + \vec t = {\bf p}^c i=14(αicic)=i=14[αi(Rciw+t )]=Ri=14(αiciw)+t i=14αi=Rpw+t =pc

  2. 已知 p ˉ c = ∑ i = 1 4 ( α i c ˉ i c ) {\bf \bar p}^c = \sum_{i = 1}^{4} (\alpha_i {\bf \bar c}_i^c) pˉc=i=14(αicˉic),证明 p c = ∑ i = 1 4 ( α i c i c ) {\bf p}^c = \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^c) pc=i=14(αicic)

  证明:假设质心坐标是 G {\bf G} G。因为 p c − G = ∑ i = 1 4 [ α i ( c i c − G ) ] = ∑ i = 1 4 ( α i c i c ) − G ∑ i = 1 4 α i = ∑ i = 1 4 ( α i c i c ) − G {\bf p}^c - {\bf G} = \sum_{i = 1}^{4} [\alpha_i ({\bf c}_i^c - {\bf G})] = \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^c) - {\bf G} \sum_{i = 1}^{4} \alpha_i = \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^c) - {\bf G} pcG=i=14[αi(cicG)]=i=14(αicic)Gi=14αi=i=14(αicic)G,所以 p c = ∑ i = 1 4 ( α i c i c ) {\bf p}^c = \sum_{i = 1}^{4} (\alpha_i {\bf c}_i^c) pc=i=14(αicic)

7.4 透视投影与正交投影


  物体在点光源下的投影称为透视投影;物体在平行光线下的投影称为正交投影,如物体在阳光的投影。焦距越大,相机的投影越接近正交投影。

7.5 范数


  假设 x = [ x 1 , x 2 , ⋯   , x n ] T {\bf x} =[x_1, x_2, \cdots, x_n]^T x=[x1,x2,,xn]T,则 x {\bf x} x 的 p 范数

∣ ∣ x ∣ ∣ p = ( ∣ x 1 ∣ p + ∣ x 2 ∣ p + ⋯ + ∣ x n ∣ p ) 1 p ||{\bf x}||_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{\frac{1}{p}} xp=(x1p+x2p++xnp)p1

注意,上标表示指数,下标表示范数。当 p = 2 时,二范数 ∣ ∣ x ∣ ∣ 2 ||{\bf x}||_2 x2 通常简写为 ∣ ∣ x ∣ ∣ ||{\bf x}|| x。假设 v = [ x , y , z ] T {\bf v} = [x, y, z]^T v=[x,y,z]T,则它具备一下性质

{ ∣ ∣ v ∣ ∣ = ( x 2 + y 2 + z 2 ) 1 2 ∣ ∣ v ∣ ∣ 2 = v T v = x 2 + y 2 + z 2 ∣ ∣ a v ∣ ∣ 2 = a 2 ( x 2 + y 2 + z 2 ) ∣ ∣ v 1 + v 2 ∣ ∣ 2 = ∣ ∣ v 1 ∣ ∣ 2 + ∣ ∣ v 2 ∣ ∣ 2 + 2 v 1 T v 2 ∣ ∣ a 1 v 1 + a 2 v 2 ∣ ∣ 2 = a 1 2 v 1 T v 1 + 2 a 1 a 2 v 1 T v 2 + a 2 2 v 2 T v 2 \left\{\begin{aligned} ||{\bf v}|| &= (x^2 + y^2 + z^2)^{\frac{1}{2}} \\ ||{\bf v}||^2 &= {\bf v}^T {\bf v} = x^2 + y^2 + z^2 \\ ||a {\bf v}||^2 &= a^2 (x^2 + y^2 + z^2) \\ ||{\bf v_1} + {\bf v_2}||^2 &= ||{\bf v_1}||^2 + ||{\bf v_2}||^2 + 2 {\bf v_1}^T {\bf v_2} \\ ||a_1 {\bf v_1} + a_2 {\bf v_2}||^2 &= a_1^2 {\bf v_1}^T {\bf v_1} + 2 a_1 a_2 {\bf v_1}^T {\bf v_2} + a_2^2 {\bf v_2}^T {\bf v_2} \end{aligned}\right. vv2av2v1+v22a1v1+a2v22=(x2+y2+z2)21=vTv=x2+y2+z2=a2(x2+y2+z2)=v12+v22+2v1Tv2=a12v1Tv1+2a1a2v1Tv2+a22v2Tv2

8. 参考文献


  1. EPnP 论文,洛桑联邦理工学院。
  2. EPnP,知乎专栏。
  3. EPnP,知乎专栏。
  4. PCA,CSDN。
  5. 豪斯霍尔德变换法的 QR 分解,CSDN。
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值