AI算法在供应链预测上被越来越多地使用

本文探讨了在现代供应链管理中,预测的重要性,从传统的定性方法到基于AI算法的定量预测转变。文章强调了数据驱动思维、建模能力、行业理解和创新思维在供应链预测中的关键作用,并推荐了一本详细介绍供应链预测理论与实践的书籍,以帮助读者掌握这一领域的知识和技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们常说“预测是供应链优化的基础”,这对“天作之合”是如何形成的呢?

提到供应链,我们可能首先想到的名词是“计划”“协同”“决策”等。

在现代的供应链管理中,这些流程机制的实现,都有赖于对于供应链的精准预测——在掌握“现有信息”的基础上,对未来的事情进行“测算”,提前预知供应链各环节(规划、生产、库存、运输),更好地应对前端市场和后端生产侧带来的不确定性。

预测过程通常会根据所用信息和方法分为两种。

传统的供应链预测,一般是依靠定性的方法,依赖于专家的感知和经验,以及对历史情况的人工判断。

例如,有的公司直接对于历史数据进行简单转换、拆解,得出未来的预测值;另一些公司利用市场研究报告对特定人群、细分市场进行调研,得到对于未来的期望值。

这样的预测方法比较费时费力,结果也不可量化评估。

在现代供应链中,当历史数据充分且可以将其中的模式延续到未来时,那么我们会优先采用定量的方法。企业的生产或业务系统会积累大量的实时或离线数据,对于数据加工及结果输出的效率要求很高,此时算法的作用就会凸显。

图片

近年来,随着算力、数据的不断完善,AI算法在供应链预测上被越来越多地使用——使用大规模数据以及数据科学理论,更加“定量”地把握供应链的未来动向。

供应链预测没有一种放之四海而皆准的方法,无论选择哪种方法,都不可能100%准确,但无疑预测算法的引入大大地减少了信息的偏移和风险,可以做出更可靠的预测。

供应链预测在企业中的成功案例也屡见不鲜,简单举两个例子:

  • 某企业甲曾面临着严重的商品库存成本过高、仓库协同及调拨困难等问题,其根源在于缺少对于前端需求的认知,缺乏准确可靠的预测数据。预测算法在改善其供应链管理能力的作用是,通过对历史订单、仓储信息的分析,对于仓储各环节的商品建立预测模型,提前预知各商品未来1-2个月的需求量。供应链管理部门可以根据这些信息提前将货物放在距离实际需求最近的仓库中,而对于不确定性较大的商品则提供足够的安全库存,保证商品的高效履约。更重要的是,整个过程的成本相较有了之前显著降低,用更少的成本换来了更充足的货物履约能力——这一切的背后都有着AI预测算法的深度加持。

  • 某企业乙有着完整的供应链链路,从采购、分销到补调、配送,“全链路”的业务形态使得管理难度呈指数增长,这其中的问题包括过高的管理成本,也包括完整链路的协同困难。预测技术在这种场景下有着很多用武之地,对于各单点环节,预测技术可以帮助其完成运营计划的指定,无论是在采购量的精准预测,还是对于履约环节的运输、分拣环节包裹量的预测,都可以帮助各单个环节提前安排人员、设备,或更加科学地制定预期目标。更重要的是,这些预测值在各环节之间进行横向校准,保证数据的“统一性”,使得各环节不再各自为战,而是有着统一的预测数据底座,利用预测数据驱动前台业务协同。

如果你对供应链行业感兴趣,也有意向走进预测领域,那么你可能需要从以下几个方面积累能力和经验:

1. 数据思维。

无论是选模型、看业务,都依赖于对于数据本身的了解,透过数据洞察问题,比如数据形态如何,可预测性如何,是否存在一定的周期性或季节性特点,数据底层加工是否可靠,是否需要其他维度的数据辅助,如何获取这些数据等等。

总之,如果没有数据驱动思维,除了拍脑袋,啥也做不了。我曾问过北大光华管理学院的一个统计学家,到底什么样的数据是不可预

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值