文章目录
一、Anaconda简介
1.1 介绍
Anaconda是一个安装、管理Python相关包的软件,还自带Python、Jupyter Notebook、Spyder,有管理包的Conda工具。Anaconda包含了Conda、Python在内的超过180个科学包及其依赖项。
Anaconda 是专门为了方便使用 Python 进行数据科学研究而建立的一组软件包,涵盖了数据科学领域常见的 Python 库,并且自带了专门用来解决软件环境依赖问题的 Conda 包管理系统。主要是提供了包管理与环境管理的功能,可以很方便地解决多版本Python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令Conda来进行包和环境的管理,并且已经包含了Python和相关的配套工具。
Conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的Python并可以快速切换。
Anaconda则是一个打包的集合,里面预装好了Conda、某个版本的Python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。其实还有Miniconda,它只包含最基本的内容——Python与Conda,以及相关的必须依赖项,对于空间要求严格的用户,Miniconda是一种选择。
Conda将几乎所有的工具、第三方包都当做package对待,甚至包括Python和Conda自身。因此,Conda打破了包管理与环境管理的约束,能非常方便地安装各种版本Python、各种package并方便地切换。
官网:https://www.anaconda.com/products/distribution
1.2 特点
Anaconda具有如下特点:
- 开源
- 安装过程简单
- 高性能使用Python和R语言
- 免费的社区支持
其特点的实现主要基于Anaconda拥有的:
- Conda包
- 环境管理器
- 1,000+开源库
1.3 Anaconda、Conda、pip、virtualenv的区别
1.3.1 Anaconda
Anaconda是一个包含180+的科学包及其依赖项的发行版本。其包含的科学包包括:Conda, NumPy, SciPy , IPython Notebook等。
Anaconda 是在 Conda(一个包管理器和环境管理器)上发展出来的。
Anaconda集成了常用的扩展包,能够方便地对这些扩展包进行管理,比如安装和卸载包,这些操作都需要依赖Conda。Conda是一个在Windows、macOS和Linux上运行的开源软件包管理系统和环境管理系统,可以快速地安装、运行和更新软件包及其依赖项。
1.3.2 Conda
Conda是一个在Windows、macOS和Linux上运行的开源软件包管理系统和环境管理系统。Conda可以快速安装、运行和更新软件包及其依赖项。Conda可以在安装环境上轻松创建、保存、加载和切换环境。它是为Python程序创建的,但它可以为任何语言打包和分发软件。
Conda类似于npm或Maven的包及其依赖项和环境管理工具,只是Conda是针对于Python的。可以安装Miniconda或Anaconda进行安装,前者是简化版本,只包含Conda和其依赖。如果安装环境有python相关包也没有关系,不需要进行卸载。
Conda作为软件包管理器可以帮助您查找和安装软件包。如果您需要一个需要不同版本Python的包,则不需要切换到不同的环境管理器,因为Conda也是一个环境管理器。只需几个命令,您就可以设置一个完全独立的环境来运行不同版本的Python,同时在正常环境中继续运行常用版本的Python。
1.3.3 pip
pip是用于安装和管理软件包的包管理器。
Python中默认安装的版本:
- Python 2.7.9及后续版本:默认安装,命令为pip
- Python 3.4及后续版本:默认安装,命令为pip3
PyPI包下载地址:https://pypi.org/search/
1.3.4 virtualenv
virtualenv:用于创建一个独立的Python环境的工具。
在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,如Scrapy、Beautiful Soup等,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,这样需要我们根据需求不断的更新或卸载相应的库。直接对Python环境操作会让我们的开发环境和项目造成很多不必要的麻烦,管理也相当混乱。
如以下场景:
- 当一个程序需要使用Python 2.7版本,而另一个程序需要使用Python 3.6版本,如何同时使用这两个程序?
- 如果将所有程序都安装在系统下的默认路径,如:/usr/lib/python2.7/site-packages,当不小心升级了本不该升级的程序时,将会对其他的程序造成影响。
- 如果想要安装程序并在程序运行时对其库或库的版本进行修改,都会导致程序的中断。
- 在共享主机时,无法在全局site-packages目录中安装包。
virtualenv将会为它自己的安装目录创建一个环境,这并不与其他virtualenv环境共享库;同时也可以选择性地不连接已安装的全局库。
二、Anaconda安装
2.1 Anaconda下载地址
Conda默认随Miniconda或Anaconda发行,因此要安装Conda,只需要安装Miniconda或Anconda即可。
如果通过Anaconda安装, 国内直接从官网下载安装包会比较慢,可以通过https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载。
另外在使用Anaconda中附带的Conda安装软件包时,为了加快速度,也可以为Conda设置使用清华的源,具体使用可以参考https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
使用Conda安装包时,默认是从https://repo.continuum.io/pkgs/ 搜索并下载的。
官方下载:https://www.anaconda.com/products/individual
清华镜像下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
2.2 Anaconda安装步骤
2.2.1 备份文件
备份环境变量相关文件
cp $HOME/.bashr