几何代数(Geometric Algebra)

一、四元数

1、定义

四元数是简单的超复数(实部和虚部组成),任意一个四元数都可以写成:
q = a + b i + c j + d k = [ w , u ] q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k}=[w,\boldsymbol{u}] q=a+bi+cj+dk=[w,u]其中: i 2 = j 2 = k 2 = i j k = − 1 , i j = k , j k = i , k i = j \boldsymbol{i}^2=\boldsymbol{j}^2=\boldsymbol{k}^2=\boldsymbol{ijk}=-1,\boldsymbol{ij}=\boldsymbol{k},\boldsymbol{jk}=\boldsymbol{i},\boldsymbol{ki}=\boldsymbol{j} i2=j2=k2=ijk=1ij=kjk=iki=j
a = 0 a=0 a=0时称 q q q为纯四元数

2、性质

模长(范数):

∣ ∣ q ∣ ∣ = a 2 + b 2 + c 2 + d 2 = w 2 + u 2 ||q||=\sqrt{a^2+b^2+c^2+d^2}=\sqrt{w^2+\boldsymbol{u}^2} ∣∣q∣∣=a2+b2+c2+d2 =w2+u2

加减法:

q 1 ± q 2 = ( a 1 ± a 2 ) + ( b 1 ± b 2 ) i + ( c 1 ± c 2 ) j + ( d 1 ± d 2 ) k = [ w 1 ± w 2 , u 1 ± u 2 ] q_1 \pm q_2=(a_1 \pm a_2)+(b_1 \pm b_2)\boldsymbol{i}+(c_1 \pm c_2)\boldsymbol{j}+(d_1 \pm d_2)\boldsymbol{k}=[w_1 \pm w_2,\boldsymbol{u_1 \pm u_2}] q1±q2=(a1±a2)+(b1±b2)i+(c1±c2)j+(d1±d2)k=[w1±w2,u1±u2]其中: q 1 = a 1 + b 1 i + c 1 j + d 1 k = w 1 + u 1 , q 2 = a 2 + b 2 i + c 2 j + d 2 k = w 2 + u 2 q_1=a_1+b_1\boldsymbol{i}+c_1\boldsymbol{j}+d_1\boldsymbol{k}=w_1+\boldsymbol{u_1},q_2=a_2+b_2\boldsymbol{i}+c_2\boldsymbol{j}+d_2\boldsymbol{k}=w_2+\boldsymbol{u_2} q1=a1+b1i+c1j+d1k=w1+u1,q2=a2+b2i+c2j+d2k=w2+u2

标量乘法:

α q = α a + ( α b ) i + ( α c ) j + ( α d ) k = [ α w , α u ] \alpha q=\alpha a+(\alpha b)\boldsymbol{i}+(\alpha c)\boldsymbol{j}+(\alpha d)\boldsymbol{k}=[\alpha w,\alpha \boldsymbol{u}] αq=αa+(αb)i+(αc)j+(αd)k=[αw,αu],其中: α \alpha α为标量

四元数乘法:

q 1 q 2 = ( a 1 a 2 − b 1 b 2 − c 1 c 2 − d 1 d 2 ) + ( b 1 a 1 + a 1 b 2 − d 1 c 2 + c 1 d 2 ) i + ( c 1 a 1 + d 1 b 2 + a 1 c 2 − b 1 d 2 ) j + ( d 1 a 1 − c 1 b 2 + b 1 c 2 + a 1 d 2 ) k = [ w 1 w 2 − u 1 u 2 , w 1 u 1 + w 2 u 2 + u 1 × u 2 ] q_1q_2=(a_1a_2-b_1b_2-c_1c_2-d_1d_2)+\\(b_1 a_1+a_1b_2-d_1c_2+c_1d_2)\boldsymbol{i}+\\(c_1 a_1+d_1b_2+a_1c_2-b_1d_2)\boldsymbol{j}+\\(d_1 a_1-c_1b_2+b_1c_2+a_1d_2)\boldsymbol{k}\\=[w_1w_2-\boldsymbol{u_1u_2},w_1\boldsymbol{u_1}+w_2\boldsymbol{u_2}+\boldsymbol{u_1 \times u_2}] q1q2=(a1a2b1b2c1c2d1d2)+(b1a1+a1b2d1c2+c1d2)i+(c1a1+d1b2+a1c2b1d2)j+(d1a1c1b2+b1c2+a1d2)k=[w1w2u1u2,w1u1+w2u2+u1×u2]其中: q 1 = a 1 + b 1 i + c 1 j + d 1 k = w 1 + u 1 , q 2 = a 2 + b 2 i + c 2 j + d 2 k = w 2 + u 2 q_1=a_1+b_1\boldsymbol{i}+c_1\boldsymbol{j}+d_1\boldsymbol{k}=w_1+\boldsymbol{u_1},q_2=a_2+b_2\boldsymbol{i}+c_2\boldsymbol{j}+d_2\boldsymbol{k}=w_2+\boldsymbol{u_2} q1=a1+b1i+c1j+d1k=w1+u1,q2=a2+b2i+c2j+d2k=w2+u2

共轭和逆:

q ∗ = a − b i − c j − d k = [ w , u ] q^*=a-b\boldsymbol{i}-c\boldsymbol{j}-d\boldsymbol{k}=[w,\boldsymbol{u}] q=abicjdk=[w,u] q q ∗ = q ∗ q = ∣ ∣ q ∣ ∣ 2 ⟹ q − 1 = q ∗ ∣ ∣ q ∣ ∣ 2 qq^*=q^*q=||q||^2\Longrightarrow q^{-1}=\frac{q^*}{||q||^2} qq=qq=∣∣q2q1=∣∣q2q

几何意义:

对于 q = [ cos ⁡ θ , sin ⁡ θ u ] , u q=[\cos\theta,\sin\theta\boldsymbol{u}],\boldsymbol{u} q=[cosθ,sinθu],u为单位向量,表示绕轴 u \boldsymbol{u} u旋转 θ \theta θ度, q 2 = [ cos ⁡ 2 θ , sin ⁡ 2 θ u ] q^2=[\cos2\theta,\sin2\theta\boldsymbol{u}] q2=[cos2θ,sin2θu]表示绕同一轴 u \boldsymbol{u} u连续旋转 θ \theta θ度两次,等同于直接绕轴 u \boldsymbol{u} u旋转 2 θ 2\theta 2θ

3、旋转应用

对于任意向量 v \boldsymbol{v} v以单位向量定义的旋转轴 u \boldsymbol{u} u旋转 θ \theta θ度后得到 v ′ \boldsymbol{v'} v,令 v = [ 0 , v ] , v ′ = [ 0 , v ′ ] v=[0,\boldsymbol{v}],v'=[0,\boldsymbol{v'}] v=[0,v],v=[0,v],那么 v ′ = q v q − 1 v'=qvq^{-1} v=qvq1,其中 q = [ cos ⁡ θ 2 , sin ⁡ θ 2 u ] q=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\boldsymbol{u}] q=[cos2θ,sin2θu]

四元数转旋转矩阵:

对于任意向量 v \boldsymbol{v} v经过旋转矩阵 R \boldsymbol{R} R旋转后得到 v ′ \boldsymbol{v'} v
R = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] \boldsymbol{R}=\begin{bmatrix} r_{11}&r_{12}&r_{13}\\ r_{21}&r_{22}&r_{23}\\ r_{31}&r_{32}&r_{33}\\ \end{bmatrix} R= r11r21r31r12r22r32r13r23r33
v = [ 0 , v ] , v ′ = [ 0 , v ′ ] , q = a + b i + c j + d k v=[0,\boldsymbol{v}],v'=[0,\boldsymbol{v'}],q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k} v=[0,v],v=[0,v],q=a+bi+cj+dk,那么 v ′ = q v q − 1 v'=qvq^{-1} v=qvq1,其中
a = r 11 + r 22 + r 33 + 1 2 b = − r 23 − r 32 4 a c = − r 31 − r 13 4 a d = − r 12 − r 21 4 a a=\frac{\sqrt{r_{11}+r_{22}+r_{33}+1}}{2}\\ b=-\frac{r_{23}-r_{32}}{4a}\\ c=-\frac{r_{31}-r_{13}}{4a}\\ d=-\frac{r_{12}-r_{21}}{4a} a=2r11+r22+r33+1 b=4ar23r32c=4ar31r13d=4ar12r21

旋转矩阵转四元数:

对于任意向量 v \boldsymbol{v} v以单位向量定义的旋转轴 u \boldsymbol{u} u旋转 θ \theta θ度后得到 v ′ \boldsymbol{v'} v,令 q = a + b i + c j + d k q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k} q=a+bi+cj+dk,其中 a = cos ⁡ θ 2 , b = sin ⁡ θ 2 u x , c = sin ⁡ θ 2 u y , d = sin ⁡ θ 2 u z a=\cos\frac{\theta}{2},b=\sin\frac{\theta}{2}u_x,c=\sin\frac{\theta}{2}u_y,d=\sin\frac{\theta}{2}u_z a=cos2θ,b=sin2θux,c=sin2θuy,d=sin2θuz,那么 v ′ = R v \boldsymbol{v'}=\boldsymbol{R}\boldsymbol{v} v=Rv,其中
R = [ 1 − 2 c 2 − 2 d 2 2 b c − 2 a d 2 a c + 2 b d 2 b c + 2 a d 1 − 2 b 2 − 2 d 2 2 c d − 2 a b 2 b d − 2 a c 2 a b + 2 c d 1 − 2 b 2 − 2 c 2 ] \boldsymbol{R}=\begin{bmatrix} 1-2c^2-2d^2&2bc-2ad&2ac+2bd\\ 2bc+2ad&1-2b^2-2d^2&2cd-2ab\\ 2bd-2ac&2ab+2cd&1-2b^2-2c^2\\ \end{bmatrix} R= 12c22d22bc+2ad2bd2ac2bc2ad12b22d22ab+2cd2ac+2bd2cd2ab12b22c2

二、外积(升维)

1、定义

在这里插入图片描述
:标量(scalar),0维子空间,无几何拓展,如 s s s,具有大小和方向
线:向量(vector),1维子空间,1个方向拓展,如 a \boldsymbol{a} a,具有大小和方向
:双向量(bivector),2维子空间,2个方向拓展,如 a ∧ b = − b ∧ a \boldsymbol{a}\wedge\boldsymbol{b}=-\boldsymbol{b}\wedge\boldsymbol{a} ab=ba,具有大小和方向
空间:三向量(trivector),3维子空间,3个方向拓展,如 a ∧ b ∧ c = − a ∧ c ∧ b = c ∧ a ∧ b \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}=-\boldsymbol{a}\wedge\boldsymbol{c}\wedge\boldsymbol{b}=\boldsymbol{c}\wedge\boldsymbol{a}\wedge\boldsymbol{b} abc=acb=cab,具有大小和方向
区分:对于空间维度来说,内积是降维操作,叉积是保级操作,外积是升维操作。

2、加法

标量 s 1 + s 2 s_1+s_2 s1+s2
向量 a 1 + a 2 \boldsymbol{a_1}+\boldsymbol{a_2} a1+a2
双向量 ( a 1 ∧ b 1 ) + ( a 2 ∧ b 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}) + (\boldsymbol{a_2}\wedge\boldsymbol{b_2}) (a1b1)+(a2b2)
三向量 ( a 1 ∧ b 1 ∧ c 1 ) + ( a 2 ∧ b 2 ∧ c 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}\wedge\boldsymbol{c_1}) + (\boldsymbol{a_2}\wedge\boldsymbol{b_2}\wedge\boldsymbol{c_2}) (a1b1c1)+(a2b2c2)

2、乘法

标量 s 1 ∗ s 2 s_1*s_2 s1s2
向量 a 1 ∗ a 2 \boldsymbol{a_1}*\boldsymbol{a_2} a1a2
双向量 ( a 1 ∧ b 1 ) ∗ ( a 2 ∧ b 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}) * (\boldsymbol{a_2}\wedge\boldsymbol{b_2}) (a1b1)(a2b2)
三向量 ( a 1 ∧ b 1 ∧ c 1 ) ∗ ( a 2 ∧ b 2 ∧ c 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}\wedge\boldsymbol{c_1}) * (\boldsymbol{a_2}\wedge\boldsymbol{b_2}\wedge\boldsymbol{c_2}) (a1b1c1)(a2b2c2)

3、性质

a ∧ b = − b ∧ a \boldsymbol{a}\wedge\boldsymbol{b} = -\boldsymbol{b}\wedge\boldsymbol{a} ab=ba
a ∧ ( α b ∧ β c ) = α ( a ∧ b ) + β ( a ∧ c ) \boldsymbol{a}\wedge(\alpha\boldsymbol{b}\wedge\beta\boldsymbol{c}) = \alpha(\boldsymbol{a}\wedge\boldsymbol{b})+\beta(\boldsymbol{a}\wedge\boldsymbol{c}) a(αbβc)=α(ab)+β(ac)
( a ∧ b ) ∧ c = a ∧ ( b ∧ c ) (\boldsymbol{a}\wedge\boldsymbol{b})\wedge\boldsymbol{c} = \boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}) (ab)c=a(bc)
a ∧ b ∧ c ∧ d = 0 \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c} \wedge\boldsymbol{d} = 0 abcd=0

三、内积(降维)

1、定义

与原子空间的正交补空间的交集
a ⋅ b = ∣ a ∣ ∣ b ∣ c o s < a , b > \boldsymbol{a}\cdot\boldsymbol{b}=|a||b|cos<\boldsymbol{a},\boldsymbol{b}> ab=a∣∣bcos<a,b>---------------------------------------------------------------------------------标量
a ⋅ ( b ∧ c ) = ( a ⋅ b ) ∧ c + ( a ⋅ c ) ∧ b \boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c})=(\boldsymbol{a}\cdot\boldsymbol{b})\wedge\boldsymbol{c}+(\boldsymbol{a}\cdot\boldsymbol{c})\wedge\boldsymbol{b} a(bc)=(ab)c+(ac)b----------------------------------------------------------------向量
( a ∧ b ) ⋅ ( c ∧ d ) = a ⋅ ( b ⋅ ( c ∧ d ) ) = ( a ⋅ d ) ( b ⋅ c ) − ( a ⋅ c ) ( b ⋅ d ) (\boldsymbol{a}\wedge\boldsymbol{b})\cdot(\boldsymbol{c}\wedge\boldsymbol{d})=\boldsymbol{a}\cdot(\boldsymbol{b}\cdot(\boldsymbol{c}\wedge\boldsymbol{d}))=(\boldsymbol{a}\cdot\boldsymbol{d})(\boldsymbol{b}\cdot\boldsymbol{c})-(\boldsymbol{a}\cdot\boldsymbol{c})(\boldsymbol{b}\cdot\boldsymbol{d}) (ab)(cd)=a(b(cd))=(ad)(bc)(ac)(bd)--------------------标量
a ⋅ ( b ∧ c ∧ d ) = ( a ⋅ b ) ∧ c ∧ d − b ∧ ( a ⋅ c ) ∧ d + b ∧ c ∧ ( a ⋅ d ) \boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})=(\boldsymbol{a}\cdot\boldsymbol{b})\wedge\boldsymbol{c}\wedge\boldsymbol{d}-\boldsymbol{b}\wedge(\boldsymbol{a}\cdot\boldsymbol{c})\wedge\boldsymbol{d}+\boldsymbol{b}\wedge\boldsymbol{c}\wedge(\boldsymbol{a}\cdot\boldsymbol{d}) a(bcd)=(ab)cdb(ac)d+bc(ad)--------------------标量

2、性质

任何一个子空间与一个trivector做内积得到是该子空间的正交补空间

四、范数

∣ ∣ a ∣ ∣ 2 = a ⋅ a ||\boldsymbol{a}||^2 = \boldsymbol{a}\cdot\boldsymbol{a} ∣∣a2=aa
∣ ∣ a ∧ b ∣ ∣ 2 = ( b ∧ a ) ⋅ ( a ∧ b ) ||\boldsymbol{a}\wedge\boldsymbol{b}||^2 = (\boldsymbol{b}\wedge\boldsymbol{a})\cdot(\boldsymbol{a}\wedge\boldsymbol{b}) ∣∣ab2=(ba)(ab)
∣ ∣ a ∧ b ∧ c ∣ ∣ = ( c ∧ b ∧ a ) ⋅ ( a ∧ b ∧ c ) ||\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}|| = (\boldsymbol{c}\wedge\boldsymbol{b}\wedge\boldsymbol{a})\cdot(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}) ∣∣abc∣∣=(cba)(abc)
总结: ∣ ∣ x ∣ ∣ 2 = x ~ ⋅ x ||\boldsymbol{x}||^2 = \widetilde{\boldsymbol{x}}\cdot\boldsymbol{x} ∣∣x2=x x,其中 x ~ \widetilde{\boldsymbol{x}} x x \boldsymbol{x} x的反转(reverse)

五、对偶(正交补空间)

a ∗ = b ∧ c \boldsymbol{a}^* = \boldsymbol{b}\wedge\boldsymbol{c} a=bc
( a ∧ b ) ∗ = c (\boldsymbol{a}\wedge\boldsymbol{b})^* = \boldsymbol{c} (ab)=c
( a ∧ b ∧ c ) ∗ = α (\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^*=\alpha (abc)=α

六、单位正交基

单位正交基:{ e 1 , e 2 , e 3 \boldsymbol{e_1}, \boldsymbol{e_2},\boldsymbol{e_3} e1,e2,e3} 体元: I = e 1 ∧ e 2 ∧ e 3 \boldsymbol{I}=\boldsymbol{e_1}\wedge\boldsymbol{e_2}\wedge\boldsymbol{e_3} I=e1e2e3
对于任何一个向量 a = a 1 e 1 + a 2 e 2 + a 3 e 3 \boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3} a=a1e1+a2e2+a3e3,则:
a ∗ = − a ⋅ I \boldsymbol{a}^*=-\boldsymbol{a}\cdot\boldsymbol{I} a=aI,即 a ∗ = − a 1 e 2 ∧ e 3 − a 2 e 3 ∧ e 1 − a 3 e 1 ∧ e 2 \boldsymbol{a}^*=-a_1\boldsymbol{e_2}\wedge\boldsymbol{e_3}-a_2\boldsymbol{e_3}\wedge\boldsymbol{e_1}-a_3\boldsymbol{e_1}\wedge\boldsymbol{e_2} a=a1e2e3a2e3e1a3e1e2
∣ ∣ a ∣ ∣ 2 = a 1 2 + a 2 2 + a 3 2 ||\boldsymbol{a}||^2 = {a_1}^2+{a_2}^2+{a_3}^2 ∣∣a2=a12+a22+a32
∣ ∣ a ∗ ∣ ∣ 2 = ∣ ∣ a ∣ ∣ 2 ||\boldsymbol{a^*}||^2 = ||\boldsymbol{a}||^2 ∣∣a2=∣∣a2
对于任何两个向量 a = a 1 e 1 + a 2 e 2 + a 3 e 3 , b = b 1 e 1 + b 2 e 2 + b 3 e 3 \boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3},\boldsymbol{b}=b_1\boldsymbol{e_1}+b_2\boldsymbol{e_2}+b_3\boldsymbol{e_3} a=a1e1+a2e2+a3e3b=b1e1+b2e2+b3e3,则:
a ∧ b = ( a 2 b 3 − a 3 b 2 ) e 2 ∧ e 3 + ( a 3 b 1 − a 1 b 3 ) e 3 ∧ e 1 + ( a 1 b 2 − a 2 b 1 ) e 1 ∧ e 2 \boldsymbol{a}\wedge\boldsymbol{b}=(a_2b_3-a_3b_2)\boldsymbol{e_2}\wedge\boldsymbol{e_3}+(a_3b_1-a_1b_3)\boldsymbol{e_3}\wedge\boldsymbol{e_1}+(a_1b_2-a_2b_1)\boldsymbol{e_1}\wedge\boldsymbol{e_2} ab=(a2b3a3b2)e2e3+(a3b1a1b3)e3e1+(a1b2a2b1)e1e2
( a ∧ b ) ∗ = ( a 2 b 3 − a 3 b 2 ) e 1 + ( a 3 b 1 − a 1 b 3 ) e 2 + ( a 1 b 2 − a 2 b 1 ) e 3 (\boldsymbol{a}\wedge\boldsymbol{b})^*=(a_2b_3-a_3b_2)\boldsymbol{e_1}+(a_3b_1-a_1b_3)\boldsymbol{e_2}+(a_1b_2-a_2b_1)\boldsymbol{e_3} (ab)=(a2b3a3b2)e1+(a3b1a1b3)e2+(a1b2a2b1)e3
对于任何三个不共面的向量 a , b , c \boldsymbol{a},\boldsymbol{b},\boldsymbol{c} a,b,c,则:
a ∧ b ∧ c = α ( e 1 ∧ e 2 ∧ e 3 ) \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c} = \alpha(\boldsymbol{e_1}\wedge\boldsymbol{e_2}\wedge\boldsymbol{e_3}) abc=α(e1e2e3)
∣ ∣ a ∧ b ∧ c ∣ ∣ 2 = α 2 ||\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}||^2 = \alpha^2 ∣∣abc2=α2
( a ∧ b ∧ c ) ∗ = − α (\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^* =- \alpha (abc)=α
注意: ( a ∧ b ) ∗ = a × b (\boldsymbol{a}\wedge\boldsymbol{b})^*=\boldsymbol{a}\times\boldsymbol{b} (ab)=a×b(叉积), ( a ∧ b ∧ c ) ∗ = ∣ a , b , c ∣ (\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^*=|\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}| (abc)=a,b,c(混合积)

七、外积下的向量空间

基本元素: α \alpha α(标量), a \boldsymbol{a} a(向量), b ∧ c \boldsymbol{b}\wedge\boldsymbol{c} bc(二向量), d ∧ e ∧ f \boldsymbol{d}\wedge\boldsymbol{e}\wedge\boldsymbol{f} def(三向量)
A = α + a + b ∧ c + d ∧ e ∧ f A=\alpha+\boldsymbol{a}+\boldsymbol{b}\wedge\boldsymbol{c}+\boldsymbol{d}\wedge\boldsymbol{e}\wedge\boldsymbol{f} A=α+a+bc+def

八、几何积

1、单位正交基

单位正交基:{ e 1 , e 2 , e 3 \boldsymbol{e_1}, \boldsymbol{e_2},\boldsymbol{e_3} e1,e2,e3}
e 1 2 = e 2 2 = e 3 2 = 1 \boldsymbol{e_1^2}=\boldsymbol{e_2^2}=\boldsymbol{e_3^2}=1 e12=e22=e32=1
e 1 e 2 = − e 2 e 1 , e 2 e 3 = − e 3 e 2 , e 3 e 1 = − e 1 e 3 \boldsymbol{e_1}\boldsymbol{e_2}=-\boldsymbol{e_2}\boldsymbol{e_1},\boldsymbol{e_2}\boldsymbol{e_3}=-\boldsymbol{e_3}\boldsymbol{e_2},\boldsymbol{e_3}\boldsymbol{e_1}=-\boldsymbol{e_1}\boldsymbol{e_3} e1e2=e2e1,e2e3=e3e2,e3e1=e1e3

2、单位正交基

3、几何积下的向量空间

基本元素: α \alpha α(标量), a \boldsymbol{a} a(向量), b c \boldsymbol{b}\boldsymbol{c} bc(二向量), d e f \boldsymbol{d}\boldsymbol{e}\boldsymbol{f} def(三向量)
A = α + a + b c + d e f A=\alpha+\boldsymbol{a}+\boldsymbol{b}\boldsymbol{c}+\boldsymbol{d}\boldsymbol{e}\boldsymbol{f} A=α+a+bc+def,其中 a = a 1 e 1 + a 2 e 2 + a 3 e 3 \boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3} a=a1e1+a2e2+a3e3, b c = ( b c ) 1 e 2 e 3 + ( b c ) 2 e 3 e 1 + ( b c ) 3 e 1 e 2 \boldsymbol{bc}=(bc)_1\boldsymbol{e_2e_3}+(bc)_2\boldsymbol{e_3e_1}+(bc)_3\boldsymbol{e_1e_2} bc=(bc)1e2e3+(bc)2e3e1+(bc)3e1e2, d e f = ( d e f ) e 1 e 2 e 3 \boldsymbol{def}=(def)\boldsymbol{e_1e_2e_3} def=(def)e1e2e3

4、定义

a b = ( a 1 b 1 + a 2 b 2 + a 3 b 3 ) + ( a 2 b 3 − a 3 b 2 ) e 2 e 3 + ( a 3 b 1 − a 1 b 3 ) e 3 e 1 + ( a 1 b 2 − a 2 b 1 ) e 1 e 2 \boldsymbol{a}\boldsymbol{b}=(a_1b_1+a_2b_2+a_3b_3)+(a_2b_3-a_3b_2)\boldsymbol{e_2e_3}+(a_3b_1-a_1b_3)\boldsymbol{e_3e_1}+(a_1b_2-a_2b_1)\boldsymbol{e_1e_2} ab=(a1b1+a2b2+a3b3)+(a2b3a3b2)e2e3+(a3b1a1b3)e3e1+(a1b2a2b1)e1e2
注意: e 1 e 1 = 1 , e 1 ∧ e 1 = 0 \boldsymbol{e_1e_1}=1,\boldsymbol{e_1}\wedge\boldsymbol{e_1}=0 e1e1=1,e1e1=0

5、性质

1、 a ∧ b = 1 2 ( a b − b a ) \boldsymbol{a}\wedge\boldsymbol{b}=\frac{1}{2}(\boldsymbol{ab}-\boldsymbol{ba}) ab=21(abba)
2、 < a , b > = 1 2 ( a b + b a ) <\boldsymbol{a},\boldsymbol{b}>=\frac{1}{2}(\boldsymbol{ab}+\boldsymbol{ba}) <a,b>=21(ab+ba)
3、 a b = a ∧ b + < a , b > \boldsymbol{a}\boldsymbol{b}=\boldsymbol{a}\wedge\boldsymbol{b}+<\boldsymbol{a},\boldsymbol{b}> ab=ab+<a,b>
4、 a ( b ∧ c ) = a ⋅ ( b ∧ c ) + a ∧ ( b ∧ c ) \boldsymbol{a}(\boldsymbol{b}\wedge\boldsymbol{c})=\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c})+\boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}) a(bc)=a(bc)+a(bc)
5、 a ( b ∧ c ∧ d ) = a ⋅ ( b ∧ c ∧ d ) + a ∧ ( b ∧ c ∧ d ) \boldsymbol{a}(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})=\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})+\boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d}) a(bcd)=a(bcd)+a(bcd)
6、 a ∧ b ∧ c = 1 6 ( a b c + b c a + c a b − c b a − b a c − a c b ) \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}=\frac{1}{6}(\boldsymbol{abc}+\boldsymbol{bca}+\boldsymbol{cab}-\boldsymbol{cba}-\boldsymbol{bac}-\boldsymbol{acb}) abc=61(abc+bca+cabcbabacacb)
一般情况:
a X = a ⋅ X + a ∧ X \boldsymbol{a}\boldsymbol{X}=\boldsymbol{a}\cdot\boldsymbol{X}+\boldsymbol{a}\wedge\boldsymbol{X} aX=aX+aX,其中 X \boldsymbol{X} X为向量、二向量或三向量
< a , b > = 0 ⇐ ⇒ <\boldsymbol{a},\boldsymbol{b}>=0\Leftarrow\Rightarrow <a,b>=0⇐⇒ a , b \boldsymbol{a},\boldsymbol{b} a,b相互垂直可得:
a b = − b a ⇐ ⇒ \boldsymbol{ab}=-\boldsymbol{ba}\Leftarrow\Rightarrow ab=ba⇐⇒ a , b \boldsymbol{a},\boldsymbol{b} a,b相互垂直

6、逆

a 2 = ∣ ∣ a ∣ ∣ 2 ⇒ a − 1 = a ∣ ∣ a ∣ ∣ 2 \boldsymbol{a}^2=||\boldsymbol{a}||^2\Rightarrow\boldsymbol{a}^{-1}=\frac{\boldsymbol{a}}{||\boldsymbol{a}||^2} a2=∣∣a2a1=∣∣a2a
( a b ) − 1 = b − 1 a − 1 \boldsymbol{(ab)}^{-1}=\boldsymbol{b}^{-1}\boldsymbol{a}^{-1} (ab)1=b1a1
( a b c ) − 1 = c − 1 b − 1 a − 1 \boldsymbol{(abc)}^{-1}=\boldsymbol{c}^{-1}\boldsymbol{b}^{-1}\boldsymbol{a}^{-1} (abc)1=c1b1a1
( a ∧ b ) − 1 = b ∧ a ∣ ∣ a ∧ b ∣ ∣ 2 (\boldsymbol{a}\wedge\boldsymbol{b})^{-1}=\frac{\boldsymbol{b}\wedge\boldsymbol{a}}{||\boldsymbol{a}\wedge\boldsymbol{b}||^2} (ab)1=∣∣ab2ba
注意:当 a ≠ 0 \boldsymbol{a}\neq0 a=0 a b = a c ⇒ b = c \boldsymbol{ab}=\boldsymbol{ac}\Rightarrow\boldsymbol{b}=\boldsymbol{c} ab=acb=c(仅对于几何积而言成立,对于内积和外积不成立)

九、应用

1、投影与反射

在这里插入图片描述
对于直线:
a ∥ = < a , x ∣ ∣ x ∣ ∣ > x ∣ ∣ x ∣ ∣ = < a , x > x ∣ ∣ x ∣ ∣ 2 = < a , x > x − 1 \boldsymbol{a}_{\parallel}=<\boldsymbol{a},\frac{\boldsymbol{x}}{||\boldsymbol{x}||}>\frac{\boldsymbol{x}}{||\boldsymbol{x}||}=<\boldsymbol{a},\boldsymbol{x}>\frac{\boldsymbol{x}}{||\boldsymbol{x}||^2}=<\boldsymbol{a},\boldsymbol{x}>\boldsymbol{x}^{-1} a=<a,∣∣x∣∣x>∣∣x∣∣x=<a,x>∣∣x2x=<a,x>x1
a ⊥ = ( a ∧ x ∣ ∣ x ∣ ∣ ) x ∣ ∣ x ∣ ∣ = ( a ∧ x ) x ∣ ∣ x ∣ ∣ 2 = ( a ∧ x ) x − 1 \boldsymbol{a}_{\perp}=(\boldsymbol{a}\wedge\frac{\boldsymbol{x}}{||\boldsymbol{x}||})\frac{\boldsymbol{x}}{||\boldsymbol{x}||}=(\boldsymbol{a}\wedge\boldsymbol{x})\frac{\boldsymbol{x}}{||\boldsymbol{x}||^2}=(\boldsymbol{a}\wedge\boldsymbol{x})\boldsymbol{x}^{-1} a=(a∣∣x∣∣x)∣∣x∣∣x=(ax)∣∣x2x=(ax)x1
a T = a ∥ − a ⊥ = < a , x > x − 1 − ( a ∧ x ) x − 1 = < x , a > x − 1 + ( x ∧ a ) x − 1 = x a x − 1 \boldsymbol{a}_T=\boldsymbol{a}_{\parallel}-\boldsymbol{a}_{\perp}=<\boldsymbol{a},\boldsymbol{x}>\boldsymbol{x}^{-1}-(\boldsymbol{a}\wedge\boldsymbol{x})\boldsymbol{x}^{-1}=<\boldsymbol{x},\boldsymbol{a}>\boldsymbol{x}^{-1}+(\boldsymbol{x}\wedge\boldsymbol{a})\boldsymbol{x}^{-1}=\boldsymbol{xax^{-1}} aT=aa=<a,x>x1(ax)x1=<x,a>x1+(xa)x1=xax1
对于平面:
a ∥ = < a , n ∣ ∣ n ∣ ∣ > n ∣ ∣ n ∣ ∣ = < a , n > n ∣ ∣ n ∣ ∣ 2 = < a , n > n − 1 \boldsymbol{a}_{\parallel}=<\boldsymbol{a},\frac{\boldsymbol{n}}{||\boldsymbol{n}||}>\frac{\boldsymbol{n}}{||\boldsymbol{n}||}=<\boldsymbol{a},\boldsymbol{n}>\frac{\boldsymbol{n}}{||\boldsymbol{n}||^2}=<\boldsymbol{a},\boldsymbol{n}>\boldsymbol{n}^{-1} a=<a,∣∣n∣∣n>∣∣n∣∣n=<a,n>∣∣n2n=<a,n>n1
a ⊥ = ( a ∧ n ∣ ∣ n ∣ ∣ ) n ∣ ∣ n ∣ ∣ = ( a ∧ n ) n ∣ ∣ n ∣ ∣ 2 = ( a ∧ n ) n − 1 \boldsymbol{a}_{\perp}=(\boldsymbol{a}\wedge\frac{\boldsymbol{n}}{||\boldsymbol{n}||})\frac{\boldsymbol{n}}{||\boldsymbol{n}||}=(\boldsymbol{a}\wedge\boldsymbol{n})\frac{\boldsymbol{n}}{||\boldsymbol{n}||^2}=(\boldsymbol{a}\wedge\boldsymbol{n})\boldsymbol{n}^{-1} a=(a∣∣n∣∣n)∣∣n∣∣n=(an)∣∣n2n=(an)n1
a T = a ⊥ − a ∥ = ( a ∧ n ) n − 1 − < a , n > n − 1 = − ( ( n ∧ a ) n − 1 + < n , a > n − 1 ) = − n a n − 1 \boldsymbol{a}_T=\boldsymbol{a}_{\perp}-\boldsymbol{a}_{\parallel}=(\boldsymbol{a}\wedge\boldsymbol{n})\boldsymbol{n}^{-1}-<\boldsymbol{a},\boldsymbol{n}>\boldsymbol{n}^{-1}=-((\boldsymbol{n}\wedge\boldsymbol{a})\boldsymbol{n}^{-1}+<\boldsymbol{n},\boldsymbol{a}>\boldsymbol{n}^{-1})=-\boldsymbol{nan}^{-1} aT=aa=(an)n1<a,n>n1=((na)n1+<n,a>n1)=nan1

2、旋转

在这里插入图片描述
a T _ u = − u a u − 1 \boldsymbol{a}_{T\_u}=-\boldsymbol{uau}^{-1} aT_u=uau1
a T _ v = − v a T _ u v − 1 \boldsymbol{a}_{T\_v}=-\boldsymbol{v}\boldsymbol{a}_{T\_u}\boldsymbol{v}^{-1} aT_v=vaT_uv1
因此, a T _ v = ( v u ) a ( v u ) − 1 \boldsymbol{a}_{T\_v}=(\boldsymbol{vu})\boldsymbol{a}(\boldsymbol{vu})^{-1} aT_v=(vu)a(vu)1,令 R = v u \boldsymbol{R}=\boldsymbol{vu} R=vu a T _ v = R a R − 1 \boldsymbol{a}_{T\_v}=\boldsymbol{RaR^{-1}} aT_v=RaR1
u \boldsymbol{u} u绕着 l l l逆时针旋转 θ \theta θ得到 v \boldsymbol{v} v,则 a \boldsymbol{a} a绕着 l l l逆时针旋转 2 θ 2\theta 2θ可以得到 a T _ v \boldsymbol{a}_{T\_v} aT_v
在这里插入图片描述
a \boldsymbol{a} a旋转至 b \boldsymbol{b} b的旋转矩阵 R = c a \boldsymbol{R}=\boldsymbol{ca} R=ca,其中 a , b \boldsymbol{a},\boldsymbol{b} a,b均为单位向量
c = ( a + b ) / 2 ∣ ∣ a + b ) / 2 ∣ ∣ = a + b 2 ( 1 + < a , b > ) \boldsymbol{c}=\frac{(\boldsymbol{a+b})/2}{||\boldsymbol{a+b})/2||}=\frac{\boldsymbol{a+b}}{\sqrt{2(1+<\boldsymbol{a},\boldsymbol{b}>)}} c=∣∣a+b)/2∣∣(a+b)/2=2(1+<a,b>) a+b, R = 1 + b a 2 ( 1 + < a , b > ) \boldsymbol{R}=\frac{\boldsymbol{1+ba}}{\sqrt{2(1+<\boldsymbol{a},\boldsymbol{b}>)}} R=2(1+<a,b>) 1+ba
注意:旋转轴垂直于 a \boldsymbol{a} a b \boldsymbol{b} b,并且当 a \boldsymbol{a} a b \boldsymbol{b} b相反时不适用
面元: I = a ∧ b ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ s i n θ \boldsymbol{I}=\frac{\boldsymbol{a}\wedge\boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||sin\theta} I=∣∣a∣∣∣∣b∣∣sinθab
R = b a = < b , a > + b ∧ a = < a , b > − a ∧ b = c o s θ − s i n θ a ∧ b ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ s i n θ = c o s θ − I s i n θ = e x p ( − θ I ) \boldsymbol{R}=\boldsymbol{ba}=<\boldsymbol{b},\boldsymbol{a}>+\boldsymbol{b}\wedge\boldsymbol{a}=<\boldsymbol{a},\boldsymbol{b}>-\boldsymbol{a}\wedge\boldsymbol{b}=cos\theta-sin\theta\frac{\boldsymbol{a}\wedge\boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||sin\theta}=cos\theta-\boldsymbol{I}sin\theta=exp(-\theta\boldsymbol{I}) R=ba=<b,a>+ba=<a,b>ab=cosθsinθ∣∣a∣∣∣∣b∣∣sinθab=cosθIsinθ=exp(θI)

Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing By 作者: Eduardo Bayro-Corrochano ISBN-10 书号: 3319748289 ISBN-13 书号: 9783319748283 Edition 版本: 1st ed. 2019 出版日期: 2018-08-13 pages 页数: 753 $219.99 The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems. 1 Geometric Algebra for the Twenty-First Century Cybernetics Part I Fundamentals of Geometric Algebra 2Introduction to Geometric Algebra 3 Differentiation,Linear,and Multilinear Functions in Geometric Algebra 4 Geometric Calculus 5 Lie Algebras,Lie Groups,and Algebra of Incidence Part ll Euclidean,Pseudo-Euclidean Geometric Algebras, Incidence Algebra,Conformal and Projective Geometric Algebras 62D,3D,and 4D Geometric Algebras 7 Kinematics of the 2D and 3D Spaces 8 Conformal Geometric Algebra 9 The Geometric Algebras G6,0,2+,G6,3,G9,3+,G6,0,6+ 10 Programming Issues Part ll Image Processing and Computer Vision 11 Quaternion-Clifford Fourier and Wavelet Transforms 12 Geometric Algebra of Computer Vision Part IV Machine Learning 13 Geometric Neurocomputing Part V Applications of GA in lmage Processing,Graphics and Computer Vision 14 Applications of Lie Filters,Quaternion Fourier,and Wavelet Transforms 15 Invariants Theory in Computer Vision and Omnidirectional Vision 16 Geometric Algebra Tensor Voting,Hough Transform,Voting and Perception Using Conformal Geometric Algebra 17 Modeling and Registration of Medical Data Part VI Applications of GA in Machine Learning 18 Applications in Neurocomputing 19 Neurocomputing for 2D Contour and 3D Surface Reconstruction 20 Clifford Algebras and Related Algebras
英文版 内容: 第0章 基础知识 1.多复变初步 柯西公式及应用 多变量 魏尔斯特拉斯定理及其推论 解析簇 2.复流形 复流形 子流形与子簇 De Rham和Dolbeault上同调 复流形上的积分 3.层和上同调 起源:米塔一列夫勒问题 层 层的上同调 De Rham定理 Colbeault定理 4.流形的拓扑 闭链的相交 庞加莱对偶 解析闭链的相交 5.向量丛、联络和曲率 全纯复向量丛 度量、联络和曲率 6.紧致复流形的调和理论 霍奇定理 霍奇定理I的证明??局部理论 霍奇定理II的证明??全局理论 霍奇定理的应用 7.Kahler流形 Kahler条件 霍奇恒等式和霍奇分解 Lefschetz分解 第1章 复代数簇 1.除子与线丛 除子 线丛 线丛的陈类 2.消灭定理及推论 小平消灭定理 超平面截面的Lefsclaetz定理 定理 (1,1)类的Lefsclaetz定理 3.代数簇 解析簇和代数簇 簇的次数 代数簇的切空间 4.小平嵌入定理 线丛和到投影空间的映射 胀开 小平定理的证明 5.格拉斯曼理论 定义 胞腔分解 Schubert微积分 万有丛 Plucker嵌入 第2章 Riemann曲面和代数曲线 1.预备知识 Riemann曲面的嵌入 Riemann-Hurwitz公式 亏格公式 G=1,1的情况 2.阿贝尔定理 阿贝尔定理??第一种描述 第一互反定律及推论 阿贝尔定理??第二种描述 雅可比反演问题 3.曲线的线性系统 互反定律II Riemann-Roch公式 典范曲线 特殊线性系统I 超椭圆曲线与黎曼点数 特殊线性系统II 4.Plucker公式 伴随曲线 分歧 广义Plucker公式I 广义Plucker公式II Weierstrass点 平面曲线的Plucker公式 5.对应 定义和公式 空间曲线的几何性 特殊线性系统III 6.复环面和Abel簇 黎曼条件 复环面上的线丛 函数 Abel簇上的群结构 固有公式 7.曲线及曲线的行列式 初步知识 黎曼定理 黎曼奇异定理 特殊线性系统IV Torelli定理 第3章 深入技巧 1.分布与流 定义;幂公式 平滑与整齐 流的上同调 2.流在复分析上的应用 解析簇相关的流 解析簇的相交数 莱维扩展与常态映射定理 3.陈类 定义 高斯博内公式 关于全纯向量丛陈类讨论 4.不动点与剩余公式 莱夫谢茨不动点公式 全纯莱夫谢茨不动点公式 博特剩余公式 广义Hirzebruch-Riemann-Roch公式 5.谱序列及其应用 滤子化双重复形的谱序列 超上同调 二类微分 勒雷谱序列 第4章 曲面 1.初步知识 2.相交数、从属公式与Riemann-Poch 胀开与收缩 二次曲面 三次曲面 2.有理映射 有理和双有理映射 曲线与代数面 面之间双有理映射的结构 3.有理曲面I 诺特引理 有理直纹面 广义有理曲面 极小度曲面 最大类曲线 施泰纳构造 Enriques-Petri定理 4.有理曲面II Castelnuovo-Enriques定婴 Enriques曲面 修正的三次曲面 中两个二次曲面的相交 5.无理曲面 阿尔巴内塞映射 无理直纹曲面 椭圆曲面简介 小平数和分类定理I 分类定理II K-3曲面 诺特曲面 6.诺特公式 平滑超平面的诺特公式 胀开子流形 曲面的寻常奇点 一般曲面的诺特公式 几个例子 曲面的孤立奇点 第5章 留数(残数) 1.留数的基本性质 定义和上同调解释 整体留数定理 变换法则与局部对偶性 2.留数的应用 相交数 有限全纯映射 平面投影几何中的应用 3.交换同调代数应用初步 交换代数 同调代数 科斯居尔复形及其应用 凝聚层的简短游程 4.整体对偶 整体扩展 广义整体对偶定理解释 整体扩展和带孤立零点的向量场 整体对偶和曲面上点的剩余 模的扩张 曲面上的点和秩2向量丛 留数和向量丛 第6章 二次线丛 1.二次曲面初步 二次曲面的秧 二次曲面中的线性空间 二次曲面的线性系统 五个锥线论问题 2.二次线丛介绍 格拉斯曼G(2,4)几何 线丛 二次线丛和伴随库默尔曲面I 二次线丛的奇异线 两个构形 3.二次线丛的线 二次线丛的线簇 线簇上的曲线 两个修正构形 群法则 4.二次线丛:Reprise 二次线丛和伴随库默尔曲面II 二次线丛的有理性 索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值