几何代数(Geometric Algebra)

一、四元数

1、定义

四元数是简单的超复数(实部和虚部组成),任意一个四元数都可以写成:
q = a + b i + c j + d k = [ w , u ] q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k}=[w,\boldsymbol{u}] q=a+bi+cj+dk=[w,u]其中: i 2 = j 2 = k 2 = i j k = − 1 , i j = k , j k = i , k i = j \boldsymbol{i}^2=\boldsymbol{j}^2=\boldsymbol{k}^2=\boldsymbol{ijk}=-1,\boldsymbol{ij}=\boldsymbol{k},\boldsymbol{jk}=\boldsymbol{i},\boldsymbol{ki}=\boldsymbol{j} i2=j2=k2=ijk=1ij=kjk=iki=j
a = 0 a=0 a=0时称 q q q为纯四元数

2、性质

模长(范数):

∣ ∣ q ∣ ∣ = a 2 + b 2 + c 2 + d 2 = w 2 + u 2 ||q||=\sqrt{a^2+b^2+c^2+d^2}=\sqrt{w^2+\boldsymbol{u}^2} ∣∣q∣∣=a2+b2+c2+d2 =w2+u2

加减法:

q 1 ± q 2 = ( a 1 ± a 2 ) + ( b 1 ± b 2 ) i + ( c 1 ± c 2 ) j + ( d 1 ± d 2 ) k = [ w 1 ± w 2 , u 1 ± u 2 ] q_1 \pm q_2=(a_1 \pm a_2)+(b_1 \pm b_2)\boldsymbol{i}+(c_1 \pm c_2)\boldsymbol{j}+(d_1 \pm d_2)\boldsymbol{k}=[w_1 \pm w_2,\boldsymbol{u_1 \pm u_2}] q1±q2=(a1±a2)+(b1±b2)i+(c1±c2)j+(d1±d2)k=[w1±w2,u1±u2]其中: q 1 = a 1 + b 1 i + c 1 j + d 1 k = w 1 + u 1 , q 2 = a 2 + b 2 i + c 2 j + d 2 k = w 2 + u 2 q_1=a_1+b_1\boldsymbol{i}+c_1\boldsymbol{j}+d_1\boldsymbol{k}=w_1+\boldsymbol{u_1},q_2=a_2+b_2\boldsymbol{i}+c_2\boldsymbol{j}+d_2\boldsymbol{k}=w_2+\boldsymbol{u_2} q1=a1+b1i+c1j+d1k=w1+u1,q2=a2+b2i+c2j+d2k=w2+u2

标量乘法:

α q = α a + ( α b ) i + ( α c ) j + ( α d ) k = [ α w , α u ] \alpha q=\alpha a+(\alpha b)\boldsymbol{i}+(\alpha c)\boldsymbol{j}+(\alpha d)\boldsymbol{k}=[\alpha w,\alpha \boldsymbol{u}] αq=αa+(αb)i+(αc)j+(αd)k=[αw,αu],其中: α \alpha α为标量

四元数乘法:

q 1 q 2 = ( a 1 a 2 − b 1 b 2 − c 1 c 2 − d 1 d 2 ) + ( b 1 a 1 + a 1 b 2 − d 1 c 2 + c 1 d 2 ) i + ( c 1 a 1 + d 1 b 2 + a 1 c 2 − b 1 d 2 ) j + ( d 1 a 1 − c 1 b 2 + b 1 c 2 + a 1 d 2 ) k = [ w 1 w 2 − u 1 u 2 , w 1 u 1 + w 2 u 2 + u 1 × u 2 ] q_1q_2=(a_1a_2-b_1b_2-c_1c_2-d_1d_2)+\\(b_1 a_1+a_1b_2-d_1c_2+c_1d_2)\boldsymbol{i}+\\(c_1 a_1+d_1b_2+a_1c_2-b_1d_2)\boldsymbol{j}+\\(d_1 a_1-c_1b_2+b_1c_2+a_1d_2)\boldsymbol{k}\\=[w_1w_2-\boldsymbol{u_1u_2},w_1\boldsymbol{u_1}+w_2\boldsymbol{u_2}+\boldsymbol{u_1 \times u_2}] q1q2=(a1a2b1b2c1c2d1d2)+(b1a1+a1b2d1c2+c1d2)i+(c1a1+d1b2+a1c2b1d2)j+(d1a1c1b2+b1c2+a1d2)k=[w1w2u1u2,w1u1+w2u2+u1×u2]其中: q 1 = a 1 + b 1 i + c 1 j + d 1 k = w 1 + u 1 , q 2 = a 2 + b 2 i + c 2 j + d 2 k = w 2 + u 2 q_1=a_1+b_1\boldsymbol{i}+c_1\boldsymbol{j}+d_1\boldsymbol{k}=w_1+\boldsymbol{u_1},q_2=a_2+b_2\boldsymbol{i}+c_2\boldsymbol{j}+d_2\boldsymbol{k}=w_2+\boldsymbol{u_2} q1=a1+b1i+c1j+d1k=w1+u1,q2=a2+b2i+c2j+d2k=w2+u2

共轭和逆:

q ∗ = a − b i − c j − d k = [ w , u ] q^*=a-b\boldsymbol{i}-c\boldsymbol{j}-d\boldsymbol{k}=[w,\boldsymbol{u}] q=abicjdk=[w,u] q q ∗ = q ∗ q = ∣ ∣ q ∣ ∣ 2 ⟹ q − 1 = q ∗ ∣ ∣ q ∣ ∣ 2 qq^*=q^*q=||q||^2\Longrightarrow q^{-1}=\frac{q^*}{||q||^2} qq=qq=∣∣q2q1=∣∣q2q

几何意义:

对于 q = [ cos ⁡ θ , sin ⁡ θ u ] , u q=[\cos\theta,\sin\theta\boldsymbol{u}],\boldsymbol{u} q=[cosθ,sinθu],u为单位向量,表示绕轴 u \boldsymbol{u} u旋转 θ \theta θ度, q 2 = [ cos ⁡ 2 θ , sin ⁡ 2 θ u ] q^2=[\cos2\theta,\sin2\theta\boldsymbol{u}] q2=[cos2θ,sin2θu]表示绕同一轴 u \boldsymbol{u} u连续旋转 θ \theta θ度两次,等同于直接绕轴 u \boldsymbol{u} u旋转 2 θ 2\theta 2θ

3、旋转应用

对于任意向量 v \boldsymbol{v} v以单位向量定义的旋转轴 u \boldsymbol{u} u旋转 θ \theta θ度后得到 v ′ \boldsymbol{v'} v,令 v = [ 0 , v ] , v ′ = [ 0 , v ′ ] v=[0,\boldsymbol{v}],v'=[0,\boldsymbol{v'}] v=[0,v],v=[0,v],那么 v ′ = q v q − 1 v'=qvq^{-1} v=qvq1,其中 q = [ cos ⁡ θ 2 , sin ⁡ θ 2 u ] q=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\boldsymbol{u}] q=[cos2θ,sin2θu]

四元数转旋转矩阵:

对于任意向量 v \boldsymbol{v} v经过旋转矩阵 R \boldsymbol{R} R旋转后得到 v ′ \boldsymbol{v'} v
R = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] \boldsymbol{R}=\begin{bmatrix} r_{11}&r_{12}&r_{13}\\ r_{21}&r_{22}&r_{23}\\ r_{31}&r_{32}&r_{33}\\ \end{bmatrix} R= r11r21r31r12r22r32r13r23r33
v = [ 0 , v ] , v ′ = [ 0 , v ′ ] , q = a + b i + c j + d k v=[0,\boldsymbol{v}],v'=[0,\boldsymbol{v'}],q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k} v=[0,v],v=[0,v],q=a+bi+cj+dk,那么 v ′ = q v q − 1 v'=qvq^{-1} v=qvq1,其中
a = r 11 + r 22 + r 33 + 1 2 b = − r 23 − r 32 4 a c = − r 31 − r 13 4 a d = − r 12 − r 21 4 a a=\frac{\sqrt{r_{11}+r_{22}+r_{33}+1}}{2}\\ b=-\frac{r_{23}-r_{32}}{4a}\\ c=-\frac{r_{31}-r_{13}}{4a}\\ d=-\frac{r_{12}-r_{21}}{4a} a=2r11+r22+r33+1 b=4ar23r32c=4ar31r13d=4ar12r21

旋转矩阵转四元数:

对于任意向量 v \boldsymbol{v} v以单位向量定义的旋转轴 u \boldsymbol{u} u旋转 θ \theta θ度后得到 v ′ \boldsymbol{v'} v,令 q = a + b i + c j + d k q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k} q=a+bi+cj+dk,其中 a = cos ⁡ θ 2 , b = sin ⁡ θ 2 u x , c = sin ⁡ θ 2 u y , d = sin ⁡ θ 2 u z a=\cos\frac{\theta}{2},b=\sin\frac{\theta}{2}u_x,c=\sin\frac{\theta}{2}u_y,d=\sin\frac{\theta}{2}u_z a=cos2θ,b=sin2θux,c=sin2θuy,d=sin2θuz,那么 v ′ = R v \boldsymbol{v'}=\boldsymbol{R}\boldsymbol{v} v=Rv,其中
R = [ 1 − 2 c 2 − 2 d 2 2 b c − 2 a d 2 a c + 2 b d 2 b c + 2 a d 1 − 2 b 2 − 2 d 2 2 c d − 2 a b 2 b d − 2 a c 2 a b + 2 c d 1 − 2 b 2 − 2 c 2 ] \boldsymbol{R}=\begin{bmatrix} 1-2c^2-2d^2&2bc-2ad&2ac+2bd\\ 2bc+2ad&1-2b^2-2d^2&2cd-2ab\\ 2bd-2ac&2ab+2cd&1-2b^2-2c^2\\ \end{bmatrix} R= 12c22d22bc+2ad2bd2ac2bc2ad12b22d22ab+2cd2ac+2bd2cd2ab12b22c2

二、外积(升维)

1、定义

在这里插入图片描述
:标量(scalar),0维子空间,无几何拓展,如 s s s,具有大小和方向
线:向量(vector),1维子空间,1个方向拓展,如 a \boldsymbol{a} a,具有大小和方向
:双向量(bivector),2维子空间,2个方向拓展,如 a ∧ b = − b ∧ a \boldsymbol{a}\wedge\boldsymbol{b}=-\boldsymbol{b}\wedge\boldsymbol{a} ab=ba,具有大小和方向
空间:三向量(trivector),3维子空间,3个方向拓展,如 a ∧ b ∧ c = − a ∧ c ∧ b = c ∧ a ∧ b \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}=-\boldsymbol{a}\wedge\boldsymbol{c}\wedge\boldsymbol{b}=\boldsymbol{c}\wedge\boldsymbol{a}\wedge\boldsymbol{b} abc=acb=cab,具有大小和方向
区分:对于空间维度来说,内积是降维操作,叉积是保级操作,外积是升维操作。

2、加法

标量 s 1 + s 2 s_1+s_2 s1+s2
向量 a 1 + a 2 \boldsymbol{a_1}+\boldsymbol{a_2} a1+a2
双向量 ( a 1 ∧ b 1 ) + ( a 2 ∧ b 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}) + (\boldsymbol{a_2}\wedge\boldsymbol{b_2}) (a1b1)+(a2b2)
三向量 ( a 1 ∧ b 1 ∧ c 1 ) + ( a 2 ∧ b 2 ∧ c 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}\wedge\boldsymbol{c_1}) + (\boldsymbol{a_2}\wedge\boldsymbol{b_2}\wedge\boldsymbol{c_2}) (a1b1c1)+(a2b2c2)

2、乘法

标量 s 1 ∗ s 2 s_1*s_2 s1s2
向量 a 1 ∗ a 2 \boldsymbol{a_1}*\boldsymbol{a_2} a1a2
双向量 ( a 1 ∧ b 1 ) ∗ ( a 2 ∧ b 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}) * (\boldsymbol{a_2}\wedge\boldsymbol{b_2}) (a1b1)(a2b2)
三向量 ( a 1 ∧ b 1 ∧ c 1 ) ∗ ( a 2 ∧ b 2 ∧ c 2 ) (\boldsymbol{a_1}\wedge\boldsymbol{b_1}\wedge\boldsymbol{c_1}) * (\boldsymbol{a_2}\wedge\boldsymbol{b_2}\wedge\boldsymbol{c_2}) (a1b1c1)(a2b2c2)

3、性质

a ∧ b = − b ∧ a \boldsymbol{a}\wedge\boldsymbol{b} = -\boldsymbol{b}\wedge\boldsymbol{a} ab=ba
a ∧ ( α b ∧ β c ) = α ( a ∧ b ) + β ( a ∧ c ) \boldsymbol{a}\wedge(\alpha\boldsymbol{b}\wedge\beta\boldsymbol{c}) = \alpha(\boldsymbol{a}\wedge\boldsymbol{b})+\beta(\boldsymbol{a}\wedge\boldsymbol{c}) a(αbβc)=α(ab)+β(ac)
( a ∧ b ) ∧ c = a ∧ ( b ∧ c ) (\boldsymbol{a}\wedge\boldsymbol{b})\wedge\boldsymbol{c} = \boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}) (ab)c=a(bc)
a ∧ b ∧ c ∧ d = 0 \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c} \wedge\boldsymbol{d} = 0 abcd=0

三、内积(降维)

1、定义

与原子空间的正交补空间的交集
a ⋅ b = ∣ a ∣ ∣ b ∣ c o s < a , b > \boldsymbol{a}\cdot\boldsymbol{b}=|a||b|cos<\boldsymbol{a},\boldsymbol{b}> ab=a∣∣bcos<a,b>---------------------------------------------------------------------------------标量
a ⋅ ( b ∧ c ) = ( a ⋅ b ) ∧ c + ( a ⋅ c ) ∧ b \boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c})=(\boldsymbol{a}\cdot\boldsymbol{b})\wedge\boldsymbol{c}+(\boldsymbol{a}\cdot\boldsymbol{c})\wedge\boldsymbol{b} a(bc)=(ab)c+(ac)b----------------------------------------------------------------向量
( a ∧ b ) ⋅ ( c ∧ d ) = a ⋅ ( b ⋅ ( c ∧ d ) ) = ( a ⋅ d ) ( b ⋅ c ) − ( a ⋅ c ) ( b ⋅ d ) (\boldsymbol{a}\wedge\boldsymbol{b})\cdot(\boldsymbol{c}\wedge\boldsymbol{d})=\boldsymbol{a}\cdot(\boldsymbol{b}\cdot(\boldsymbol{c}\wedge\boldsymbol{d}))=(\boldsymbol{a}\cdot\boldsymbol{d})(\boldsymbol{b}\cdot\boldsymbol{c})-(\boldsymbol{a}\cdot\boldsymbol{c})(\boldsymbol{b}\cdot\boldsymbol{d}) (ab)(cd)=a(b(cd))=(ad)(bc)(ac)(bd)--------------------标量
a ⋅ ( b ∧ c ∧ d ) = ( a ⋅ b ) ∧ c ∧ d − b ∧ ( a ⋅ c ) ∧ d + b ∧ c ∧ ( a ⋅ d ) \boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})=(\boldsymbol{a}\cdot\boldsymbol{b})\wedge\boldsymbol{c}\wedge\boldsymbol{d}-\boldsymbol{b}\wedge(\boldsymbol{a}\cdot\boldsymbol{c})\wedge\boldsymbol{d}+\boldsymbol{b}\wedge\boldsymbol{c}\wedge(\boldsymbol{a}\cdot\boldsymbol{d}) a(bcd)=(ab)cdb(ac)d+bc(ad)--------------------标量

2、性质

任何一个子空间与一个trivector做内积得到是该子空间的正交补空间

四、范数

∣ ∣ a ∣ ∣ 2 = a ⋅ a ||\boldsymbol{a}||^2 = \boldsymbol{a}\cdot\boldsymbol{a} ∣∣a2=aa
∣ ∣ a ∧ b ∣ ∣ 2 = ( b ∧ a ) ⋅ ( a ∧ b ) ||\boldsymbol{a}\wedge\boldsymbol{b}||^2 = (\boldsymbol{b}\wedge\boldsymbol{a})\cdot(\boldsymbol{a}\wedge\boldsymbol{b}) ∣∣ab2=(ba)(ab)
∣ ∣ a ∧ b ∧ c ∣ ∣ = ( c ∧ b ∧ a ) ⋅ ( a ∧ b ∧ c ) ||\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}|| = (\boldsymbol{c}\wedge\boldsymbol{b}\wedge\boldsymbol{a})\cdot(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}) ∣∣abc∣∣=(cba)(abc)
总结: ∣ ∣ x ∣ ∣ 2 = x ~ ⋅ x ||\boldsymbol{x}||^2 = \widetilde{\boldsymbol{x}}\cdot\boldsymbol{x} ∣∣x2=x x,其中 x ~ \widetilde{\boldsymbol{x}} x x \boldsymbol{x} x的反转(reverse)

五、对偶(正交补空间)

a ∗ = b ∧ c \boldsymbol{a}^* = \boldsymbol{b}\wedge\boldsymbol{c} a=bc
( a ∧ b ) ∗ = c (\boldsymbol{a}\wedge\boldsymbol{b})^* = \boldsymbol{c} (ab)=c
( a ∧ b ∧ c ) ∗ = α (\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^*=\alpha (abc)=α

六、单位正交基

单位正交基:{ e 1 , e 2 , e 3 \boldsymbol{e_1}, \boldsymbol{e_2},\boldsymbol{e_3} e1,e2,e3} 体元: I = e 1 ∧ e 2 ∧ e 3 \boldsymbol{I}=\boldsymbol{e_1}\wedge\boldsymbol{e_2}\wedge\boldsymbol{e_3} I=e1e2e3
对于任何一个向量 a = a 1 e 1 + a 2 e 2 + a 3 e 3 \boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3} a=a1e1+a2e2+a3e3,则:
a ∗ = − a ⋅ I \boldsymbol{a}^*=-\boldsymbol{a}\cdot\boldsymbol{I} a=aI,即 a ∗ = − a 1 e 2 ∧ e 3 − a 2 e 3 ∧ e 1 − a 3 e 1 ∧ e 2 \boldsymbol{a}^*=-a_1\boldsymbol{e_2}\wedge\boldsymbol{e_3}-a_2\boldsymbol{e_3}\wedge\boldsymbol{e_1}-a_3\boldsymbol{e_1}\wedge\boldsymbol{e_2} a=a1e2e3a2e3e1a3e1e2
∣ ∣ a ∣ ∣ 2 = a 1 2 + a 2 2 + a 3 2 ||\boldsymbol{a}||^2 = {a_1}^2+{a_2}^2+{a_3}^2 ∣∣a2=a12+a22+a32
∣ ∣ a ∗ ∣ ∣ 2 = ∣ ∣ a ∣ ∣ 2 ||\boldsymbol{a^*}||^2 = ||\boldsymbol{a}||^2 ∣∣a2=∣∣a2
对于任何两个向量 a = a 1 e 1 + a 2 e 2 + a 3 e 3 , b = b 1 e 1 + b 2 e 2 + b 3 e 3 \boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3},\boldsymbol{b}=b_1\boldsymbol{e_1}+b_2\boldsymbol{e_2}+b_3\boldsymbol{e_3} a=a1e1+a2e2+a3e3b=b1e1+b2e2+b3e3,则:
a ∧ b = ( a 2 b 3 − a 3 b 2 ) e 2 ∧ e 3 + ( a 3 b 1 − a 1 b 3 ) e 3 ∧ e 1 + ( a 1 b 2 − a 2 b 1 ) e 1 ∧ e 2 \boldsymbol{a}\wedge\boldsymbol{b}=(a_2b_3-a_3b_2)\boldsymbol{e_2}\wedge\boldsymbol{e_3}+(a_3b_1-a_1b_3)\boldsymbol{e_3}\wedge\boldsymbol{e_1}+(a_1b_2-a_2b_1)\boldsymbol{e_1}\wedge\boldsymbol{e_2} ab=(a2b3a3b2)e2e3+(a3b1a1b3)e3e1+(a1b2a2b1)e1e2
( a ∧ b ) ∗ = ( a 2 b 3 − a 3 b 2 ) e 1 + ( a 3 b 1 − a 1 b 3 ) e 2 + ( a 1 b 2 − a 2 b 1 ) e 3 (\boldsymbol{a}\wedge\boldsymbol{b})^*=(a_2b_3-a_3b_2)\boldsymbol{e_1}+(a_3b_1-a_1b_3)\boldsymbol{e_2}+(a_1b_2-a_2b_1)\boldsymbol{e_3} (ab)=(a2b3a3b2)e1+(a3b1a1b3)e2+(a1b2a2b1)e3
对于任何三个不共面的向量 a , b , c \boldsymbol{a},\boldsymbol{b},\boldsymbol{c} a,b,c,则:
a ∧ b ∧ c = α ( e 1 ∧ e 2 ∧ e 3 ) \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c} = \alpha(\boldsymbol{e_1}\wedge\boldsymbol{e_2}\wedge\boldsymbol{e_3}) abc=α(e1e2e3)
∣ ∣ a ∧ b ∧ c ∣ ∣ 2 = α 2 ||\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}||^2 = \alpha^2 ∣∣abc2=α2
( a ∧ b ∧ c ) ∗ = − α (\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^* =- \alpha (abc)=α
注意: ( a ∧ b ) ∗ = a × b (\boldsymbol{a}\wedge\boldsymbol{b})^*=\boldsymbol{a}\times\boldsymbol{b} (ab)=a×b(叉积), ( a ∧ b ∧ c ) ∗ = ∣ a , b , c ∣ (\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^*=|\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}| (abc)=a,b,c(混合积)

七、外积下的向量空间

基本元素: α \alpha α(标量), a \boldsymbol{a} a(向量), b ∧ c \boldsymbol{b}\wedge\boldsymbol{c} bc(二向量), d ∧ e ∧ f \boldsymbol{d}\wedge\boldsymbol{e}\wedge\boldsymbol{f} def(三向量)
A = α + a + b ∧ c + d ∧ e ∧ f A=\alpha+\boldsymbol{a}+\boldsymbol{b}\wedge\boldsymbol{c}+\boldsymbol{d}\wedge\boldsymbol{e}\wedge\boldsymbol{f} A=α+a+bc+def

八、几何积

1、单位正交基

单位正交基:{ e 1 , e 2 , e 3 \boldsymbol{e_1}, \boldsymbol{e_2},\boldsymbol{e_3} e1,e2,e3}
e 1 2 = e 2 2 = e 3 2 = 1 \boldsymbol{e_1^2}=\boldsymbol{e_2^2}=\boldsymbol{e_3^2}=1 e12=e22=e32=1
e 1 e 2 = − e 2 e 1 , e 2 e 3 = − e 3 e 2 , e 3 e 1 = − e 1 e 3 \boldsymbol{e_1}\boldsymbol{e_2}=-\boldsymbol{e_2}\boldsymbol{e_1},\boldsymbol{e_2}\boldsymbol{e_3}=-\boldsymbol{e_3}\boldsymbol{e_2},\boldsymbol{e_3}\boldsymbol{e_1}=-\boldsymbol{e_1}\boldsymbol{e_3} e1e2=e2e1,e2e3=e3e2,e3e1=e1e3

2、单位正交基

3、几何积下的向量空间

基本元素: α \alpha α(标量), a \boldsymbol{a} a(向量), b c \boldsymbol{b}\boldsymbol{c} bc(二向量), d e f \boldsymbol{d}\boldsymbol{e}\boldsymbol{f} def(三向量)
A = α + a + b c + d e f A=\alpha+\boldsymbol{a}+\boldsymbol{b}\boldsymbol{c}+\boldsymbol{d}\boldsymbol{e}\boldsymbol{f} A=α+a+bc+def,其中 a = a 1 e 1 + a 2 e 2 + a 3 e 3 \boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3} a=a1e1+a2e2+a3e3, b c = ( b c ) 1 e 2 e 3 + ( b c ) 2 e 3 e 1 + ( b c ) 3 e 1 e 2 \boldsymbol{bc}=(bc)_1\boldsymbol{e_2e_3}+(bc)_2\boldsymbol{e_3e_1}+(bc)_3\boldsymbol{e_1e_2} bc=(bc)1e2e3+(bc)2e3e1+(bc)3e1e2, d e f = ( d e f ) e 1 e 2 e 3 \boldsymbol{def}=(def)\boldsymbol{e_1e_2e_3} def=(def)e1e2e3

4、定义

a b = ( a 1 b 1 + a 2 b 2 + a 3 b 3 ) + ( a 2 b 3 − a 3 b 2 ) e 2 e 3 + ( a 3 b 1 − a 1 b 3 ) e 3 e 1 + ( a 1 b 2 − a 2 b 1 ) e 1 e 2 \boldsymbol{a}\boldsymbol{b}=(a_1b_1+a_2b_2+a_3b_3)+(a_2b_3-a_3b_2)\boldsymbol{e_2e_3}+(a_3b_1-a_1b_3)\boldsymbol{e_3e_1}+(a_1b_2-a_2b_1)\boldsymbol{e_1e_2} ab=(a1b1+a2b2+a3b3)+(a2b3a3b2)e2e3+(a3b1a1b3)e3e1+(a1b2a2b1)e1e2
注意: e 1 e 1 = 1 , e 1 ∧ e 1 = 0 \boldsymbol{e_1e_1}=1,\boldsymbol{e_1}\wedge\boldsymbol{e_1}=0 e1e1=1,e1e1=0

5、性质

1、 a ∧ b = 1 2 ( a b − b a ) \boldsymbol{a}\wedge\boldsymbol{b}=\frac{1}{2}(\boldsymbol{ab}-\boldsymbol{ba}) ab=21(abba)
2、 < a , b > = 1 2 ( a b + b a ) <\boldsymbol{a},\boldsymbol{b}>=\frac{1}{2}(\boldsymbol{ab}+\boldsymbol{ba}) <a,b>=21(ab+ba)
3、 a b = a ∧ b + < a , b > \boldsymbol{a}\boldsymbol{b}=\boldsymbol{a}\wedge\boldsymbol{b}+<\boldsymbol{a},\boldsymbol{b}> ab=ab+<a,b>
4、 a ( b ∧ c ) = a ⋅ ( b ∧ c ) + a ∧ ( b ∧ c ) \boldsymbol{a}(\boldsymbol{b}\wedge\boldsymbol{c})=\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c})+\boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}) a(bc)=a(bc)+a(bc)
5、 a ( b ∧ c ∧ d ) = a ⋅ ( b ∧ c ∧ d ) + a ∧ ( b ∧ c ∧ d ) \boldsymbol{a}(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})=\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})+\boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d}) a(bcd)=a(bcd)+a(bcd)
6、 a ∧ b ∧ c = 1 6 ( a b c + b c a + c a b − c b a − b a c − a c b ) \boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}=\frac{1}{6}(\boldsymbol{abc}+\boldsymbol{bca}+\boldsymbol{cab}-\boldsymbol{cba}-\boldsymbol{bac}-\boldsymbol{acb}) abc=61(abc+bca+cabcbabacacb)
一般情况:
a X = a ⋅ X + a ∧ X \boldsymbol{a}\boldsymbol{X}=\boldsymbol{a}\cdot\boldsymbol{X}+\boldsymbol{a}\wedge\boldsymbol{X} aX=aX+aX,其中 X \boldsymbol{X} X为向量、二向量或三向量
< a , b > = 0 ⇐ ⇒ <\boldsymbol{a},\boldsymbol{b}>=0\Leftarrow\Rightarrow <a,b>=0⇐⇒ a , b \boldsymbol{a},\boldsymbol{b} a,b相互垂直可得:
a b = − b a ⇐ ⇒ \boldsymbol{ab}=-\boldsymbol{ba}\Leftarrow\Rightarrow ab=ba⇐⇒ a , b \boldsymbol{a},\boldsymbol{b} a,b相互垂直

6、逆

a 2 = ∣ ∣ a ∣ ∣ 2 ⇒ a − 1 = a ∣ ∣ a ∣ ∣ 2 \boldsymbol{a}^2=||\boldsymbol{a}||^2\Rightarrow\boldsymbol{a}^{-1}=\frac{\boldsymbol{a}}{||\boldsymbol{a}||^2} a2=∣∣a2a1=∣∣a2a
( a b ) − 1 = b − 1 a − 1 \boldsymbol{(ab)}^{-1}=\boldsymbol{b}^{-1}\boldsymbol{a}^{-1} (ab)1=b1a1
( a b c ) − 1 = c − 1 b − 1 a − 1 \boldsymbol{(abc)}^{-1}=\boldsymbol{c}^{-1}\boldsymbol{b}^{-1}\boldsymbol{a}^{-1} (abc)1=c1b1a1
( a ∧ b ) − 1 = b ∧ a ∣ ∣ a ∧ b ∣ ∣ 2 (\boldsymbol{a}\wedge\boldsymbol{b})^{-1}=\frac{\boldsymbol{b}\wedge\boldsymbol{a}}{||\boldsymbol{a}\wedge\boldsymbol{b}||^2} (ab)1=∣∣ab2ba
注意:当 a ≠ 0 \boldsymbol{a}\neq0 a=0 a b = a c ⇒ b = c \boldsymbol{ab}=\boldsymbol{ac}\Rightarrow\boldsymbol{b}=\boldsymbol{c} ab=acb=c(仅对于几何积而言成立,对于内积和外积不成立)

九、应用

1、投影与反射

在这里插入图片描述
对于直线:
a ∥ = < a , x ∣ ∣ x ∣ ∣ > x ∣ ∣ x ∣ ∣ = < a , x > x ∣ ∣ x ∣ ∣ 2 = < a , x > x − 1 \boldsymbol{a}_{\parallel}=<\boldsymbol{a},\frac{\boldsymbol{x}}{||\boldsymbol{x}||}>\frac{\boldsymbol{x}}{||\boldsymbol{x}||}=<\boldsymbol{a},\boldsymbol{x}>\frac{\boldsymbol{x}}{||\boldsymbol{x}||^2}=<\boldsymbol{a},\boldsymbol{x}>\boldsymbol{x}^{-1} a=<a,∣∣x∣∣x>∣∣x∣∣x=<a,x>∣∣x2x=<a,x>x1
a ⊥ = ( a ∧ x ∣ ∣ x ∣ ∣ ) x ∣ ∣ x ∣ ∣ = ( a ∧ x ) x ∣ ∣ x ∣ ∣ 2 = ( a ∧ x ) x − 1 \boldsymbol{a}_{\perp}=(\boldsymbol{a}\wedge\frac{\boldsymbol{x}}{||\boldsymbol{x}||})\frac{\boldsymbol{x}}{||\boldsymbol{x}||}=(\boldsymbol{a}\wedge\boldsymbol{x})\frac{\boldsymbol{x}}{||\boldsymbol{x}||^2}=(\boldsymbol{a}\wedge\boldsymbol{x})\boldsymbol{x}^{-1} a=(a∣∣x∣∣x)∣∣x∣∣x=(ax)∣∣x2x=(ax)x1
a T = a ∥ − a ⊥ = < a , x > x − 1 − ( a ∧ x ) x − 1 = < x , a > x − 1 + ( x ∧ a ) x − 1 = x a x − 1 \boldsymbol{a}_T=\boldsymbol{a}_{\parallel}-\boldsymbol{a}_{\perp}=<\boldsymbol{a},\boldsymbol{x}>\boldsymbol{x}^{-1}-(\boldsymbol{a}\wedge\boldsymbol{x})\boldsymbol{x}^{-1}=<\boldsymbol{x},\boldsymbol{a}>\boldsymbol{x}^{-1}+(\boldsymbol{x}\wedge\boldsymbol{a})\boldsymbol{x}^{-1}=\boldsymbol{xax^{-1}} aT=aa=<a,x>x1(ax)x1=<x,a>x1+(xa)x1=xax1
对于平面:
a ∥ = < a , n ∣ ∣ n ∣ ∣ > n ∣ ∣ n ∣ ∣ = < a , n > n ∣ ∣ n ∣ ∣ 2 = < a , n > n − 1 \boldsymbol{a}_{\parallel}=<\boldsymbol{a},\frac{\boldsymbol{n}}{||\boldsymbol{n}||}>\frac{\boldsymbol{n}}{||\boldsymbol{n}||}=<\boldsymbol{a},\boldsymbol{n}>\frac{\boldsymbol{n}}{||\boldsymbol{n}||^2}=<\boldsymbol{a},\boldsymbol{n}>\boldsymbol{n}^{-1} a=<a,∣∣n∣∣n>∣∣n∣∣n=<a,n>∣∣n2n=<a,n>n1
a ⊥ = ( a ∧ n ∣ ∣ n ∣ ∣ ) n ∣ ∣ n ∣ ∣ = ( a ∧ n ) n ∣ ∣ n ∣ ∣ 2 = ( a ∧ n ) n − 1 \boldsymbol{a}_{\perp}=(\boldsymbol{a}\wedge\frac{\boldsymbol{n}}{||\boldsymbol{n}||})\frac{\boldsymbol{n}}{||\boldsymbol{n}||}=(\boldsymbol{a}\wedge\boldsymbol{n})\frac{\boldsymbol{n}}{||\boldsymbol{n}||^2}=(\boldsymbol{a}\wedge\boldsymbol{n})\boldsymbol{n}^{-1} a=(a∣∣n∣∣n)∣∣n∣∣n=(an)∣∣n2n=(an)n1
a T = a ⊥ − a ∥ = ( a ∧ n ) n − 1 − < a , n > n − 1 = − ( ( n ∧ a ) n − 1 + < n , a > n − 1 ) = − n a n − 1 \boldsymbol{a}_T=\boldsymbol{a}_{\perp}-\boldsymbol{a}_{\parallel}=(\boldsymbol{a}\wedge\boldsymbol{n})\boldsymbol{n}^{-1}-<\boldsymbol{a},\boldsymbol{n}>\boldsymbol{n}^{-1}=-((\boldsymbol{n}\wedge\boldsymbol{a})\boldsymbol{n}^{-1}+<\boldsymbol{n},\boldsymbol{a}>\boldsymbol{n}^{-1})=-\boldsymbol{nan}^{-1} aT=aa=(an)n1<a,n>n1=((na)n1+<n,a>n1)=nan1

2、旋转

在这里插入图片描述
a T _ u = − u a u − 1 \boldsymbol{a}_{T\_u}=-\boldsymbol{uau}^{-1} aT_u=uau1
a T _ v = − v a T _ u v − 1 \boldsymbol{a}_{T\_v}=-\boldsymbol{v}\boldsymbol{a}_{T\_u}\boldsymbol{v}^{-1} aT_v=vaT_uv1
因此, a T _ v = ( v u ) a ( v u ) − 1 \boldsymbol{a}_{T\_v}=(\boldsymbol{vu})\boldsymbol{a}(\boldsymbol{vu})^{-1} aT_v=(vu)a(vu)1,令 R = v u \boldsymbol{R}=\boldsymbol{vu} R=vu a T _ v = R a R − 1 \boldsymbol{a}_{T\_v}=\boldsymbol{RaR^{-1}} aT_v=RaR1
u \boldsymbol{u} u绕着 l l l逆时针旋转 θ \theta θ得到 v \boldsymbol{v} v,则 a \boldsymbol{a} a绕着 l l l逆时针旋转 2 θ 2\theta 2θ可以得到 a T _ v \boldsymbol{a}_{T\_v} aT_v
在这里插入图片描述
a \boldsymbol{a} a旋转至 b \boldsymbol{b} b的旋转矩阵 R = c a \boldsymbol{R}=\boldsymbol{ca} R=ca,其中 a , b \boldsymbol{a},\boldsymbol{b} a,b均为单位向量
c = ( a + b ) / 2 ∣ ∣ a + b ) / 2 ∣ ∣ = a + b 2 ( 1 + < a , b > ) \boldsymbol{c}=\frac{(\boldsymbol{a+b})/2}{||\boldsymbol{a+b})/2||}=\frac{\boldsymbol{a+b}}{\sqrt{2(1+<\boldsymbol{a},\boldsymbol{b}>)}} c=∣∣a+b)/2∣∣(a+b)/2=2(1+<a,b>) a+b, R = 1 + b a 2 ( 1 + < a , b > ) \boldsymbol{R}=\frac{\boldsymbol{1+ba}}{\sqrt{2(1+<\boldsymbol{a},\boldsymbol{b}>)}} R=2(1+<a,b>) 1+ba
注意:旋转轴垂直于 a \boldsymbol{a} a b \boldsymbol{b} b,并且当 a \boldsymbol{a} a b \boldsymbol{b} b相反时不适用
面元: I = a ∧ b ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ s i n θ \boldsymbol{I}=\frac{\boldsymbol{a}\wedge\boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||sin\theta} I=∣∣a∣∣∣∣b∣∣sinθab
R = b a = < b , a > + b ∧ a = < a , b > − a ∧ b = c o s θ − s i n θ a ∧ b ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ s i n θ = c o s θ − I s i n θ = e x p ( − θ I ) \boldsymbol{R}=\boldsymbol{ba}=<\boldsymbol{b},\boldsymbol{a}>+\boldsymbol{b}\wedge\boldsymbol{a}=<\boldsymbol{a},\boldsymbol{b}>-\boldsymbol{a}\wedge\boldsymbol{b}=cos\theta-sin\theta\frac{\boldsymbol{a}\wedge\boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||sin\theta}=cos\theta-\boldsymbol{I}sin\theta=exp(-\theta\boldsymbol{I}) R=ba=<b,a>+ba=<a,b>ab=cosθsinθ∣∣a∣∣∣∣b∣∣sinθab=cosθIsinθ=exp(θI)

Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing By 作者: Eduardo Bayro-Corrochano ISBN-10 书号: 3319748289 ISBN-13 书号: 9783319748283 Edition 版本: 1st ed. 2019 出版日期: 2018-08-13 pages 页数: 753 $219.99 The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems. 1 Geometric Algebra for the Twenty-First Century Cybernetics Part I Fundamentals of Geometric Algebra 2Introduction to Geometric Algebra 3 Differentiation,Linear,and Multilinear Functions in Geometric Algebra 4 Geometric Calculus 5 Lie Algebras,Lie Groups,and Algebra of Incidence Part ll Euclidean,Pseudo-Euclidean Geometric Algebras, Incidence Algebra,Conformal and Projective Geometric Algebras 62D,3D,and 4D Geometric Algebras 7 Kinematics of the 2D and 3D Spaces 8 Conformal Geometric Algebra 9 The Geometric Algebras G6,0,2+,G6,3,G9,3+,G6,0,6+ 10 Programming Issues Part ll Image Processing and Computer Vision 11 Quaternion-Clifford Fourier and Wavelet Transforms 12 Geometric Algebra of Computer Vision Part IV Machine Learning 13 Geometric Neurocomputing Part V Applications of GA in lmage Processing,Graphics and Computer Vision 14 Applications of Lie Filters,Quaternion Fourier,and Wavelet Transforms 15 Invariants Theory in Computer Vision and Omnidirectional Vision 16 Geometric Algebra Tensor Voting,Hough Transform,Voting and Perception Using Conformal Geometric Algebra 17 Modeling and Registration of Medical Data Part VI Applications of GA in Machine Learning 18 Applications in Neurocomputing 19 Neurocomputing for 2D Contour and 3D Surface Reconstruction 20 Clifford Algebras and Related Algebras
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值