一、四元数
1、定义
四元数是简单的超复数(实部和虚部组成),任意一个四元数都可以写成:
q
=
a
+
b
i
+
c
j
+
d
k
=
[
w
,
u
]
q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k}=[w,\boldsymbol{u}]
q=a+bi+cj+dk=[w,u]其中:
i
2
=
j
2
=
k
2
=
i
j
k
=
−
1
,
i
j
=
k
,
j
k
=
i
,
k
i
=
j
\boldsymbol{i}^2=\boldsymbol{j}^2=\boldsymbol{k}^2=\boldsymbol{ijk}=-1,\boldsymbol{ij}=\boldsymbol{k},\boldsymbol{jk}=\boldsymbol{i},\boldsymbol{ki}=\boldsymbol{j}
i2=j2=k2=ijk=−1,ij=k,jk=i,ki=j
当
a
=
0
a=0
a=0时称
q
q
q为纯四元数
2、性质
模长(范数):
∣ ∣ q ∣ ∣ = a 2 + b 2 + c 2 + d 2 = w 2 + u 2 ||q||=\sqrt{a^2+b^2+c^2+d^2}=\sqrt{w^2+\boldsymbol{u}^2} ∣∣q∣∣=a2+b2+c2+d2=w2+u2
加减法:
q 1 ± q 2 = ( a 1 ± a 2 ) + ( b 1 ± b 2 ) i + ( c 1 ± c 2 ) j + ( d 1 ± d 2 ) k = [ w 1 ± w 2 , u 1 ± u 2 ] q_1 \pm q_2=(a_1 \pm a_2)+(b_1 \pm b_2)\boldsymbol{i}+(c_1 \pm c_2)\boldsymbol{j}+(d_1 \pm d_2)\boldsymbol{k}=[w_1 \pm w_2,\boldsymbol{u_1 \pm u_2}] q1±q2=(a1±a2)+(b1±b2)i+(c1±c2)j+(d1±d2)k=[w1±w2,u1±u2]其中: q 1 = a 1 + b 1 i + c 1 j + d 1 k = w 1 + u 1 , q 2 = a 2 + b 2 i + c 2 j + d 2 k = w 2 + u 2 q_1=a_1+b_1\boldsymbol{i}+c_1\boldsymbol{j}+d_1\boldsymbol{k}=w_1+\boldsymbol{u_1},q_2=a_2+b_2\boldsymbol{i}+c_2\boldsymbol{j}+d_2\boldsymbol{k}=w_2+\boldsymbol{u_2} q1=a1+b1i+c1j+d1k=w1+u1,q2=a2+b2i+c2j+d2k=w2+u2
标量乘法:
α q = α a + ( α b ) i + ( α c ) j + ( α d ) k = [ α w , α u ] \alpha q=\alpha a+(\alpha b)\boldsymbol{i}+(\alpha c)\boldsymbol{j}+(\alpha d)\boldsymbol{k}=[\alpha w,\alpha \boldsymbol{u}] αq=αa+(αb)i+(αc)j+(αd)k=[αw,αu],其中: α \alpha α为标量
四元数乘法:
q 1 q 2 = ( a 1 a 2 − b 1 b 2 − c 1 c 2 − d 1 d 2 ) + ( b 1 a 1 + a 1 b 2 − d 1 c 2 + c 1 d 2 ) i + ( c 1 a 1 + d 1 b 2 + a 1 c 2 − b 1 d 2 ) j + ( d 1 a 1 − c 1 b 2 + b 1 c 2 + a 1 d 2 ) k = [ w 1 w 2 − u 1 u 2 , w 1 u 1 + w 2 u 2 + u 1 × u 2 ] q_1q_2=(a_1a_2-b_1b_2-c_1c_2-d_1d_2)+\\(b_1 a_1+a_1b_2-d_1c_2+c_1d_2)\boldsymbol{i}+\\(c_1 a_1+d_1b_2+a_1c_2-b_1d_2)\boldsymbol{j}+\\(d_1 a_1-c_1b_2+b_1c_2+a_1d_2)\boldsymbol{k}\\=[w_1w_2-\boldsymbol{u_1u_2},w_1\boldsymbol{u_1}+w_2\boldsymbol{u_2}+\boldsymbol{u_1 \times u_2}] q1q2=(a1a2−b1b2−c1c2−d1d2)+(b1a1+a1b2−d1c2+c1d2)i+(c1a1+d1b2+a1c2−b1d2)j+(d1a1−c1b2+b1c2+a1d2)k=[w1w2−u1u2,w1u1+w2u2+u1×u2]其中: q 1 = a 1 + b 1 i + c 1 j + d 1 k = w 1 + u 1 , q 2 = a 2 + b 2 i + c 2 j + d 2 k = w 2 + u 2 q_1=a_1+b_1\boldsymbol{i}+c_1\boldsymbol{j}+d_1\boldsymbol{k}=w_1+\boldsymbol{u_1},q_2=a_2+b_2\boldsymbol{i}+c_2\boldsymbol{j}+d_2\boldsymbol{k}=w_2+\boldsymbol{u_2} q1=a1+b1i+c1j+d1k=w1+u1,q2=a2+b2i+c2j+d2k=w2+u2
共轭和逆:
q ∗ = a − b i − c j − d k = [ w , u ] q^*=a-b\boldsymbol{i}-c\boldsymbol{j}-d\boldsymbol{k}=[w,\boldsymbol{u}] q∗=a−bi−cj−dk=[w,u] q q ∗ = q ∗ q = ∣ ∣ q ∣ ∣ 2 ⟹ q − 1 = q ∗ ∣ ∣ q ∣ ∣ 2 qq^*=q^*q=||q||^2\Longrightarrow q^{-1}=\frac{q^*}{||q||^2} qq∗=q∗q=∣∣q∣∣2⟹q−1=∣∣q∣∣2q∗
几何意义:
对于 q = [ cos θ , sin θ u ] , u q=[\cos\theta,\sin\theta\boldsymbol{u}],\boldsymbol{u} q=[cosθ,sinθu],u为单位向量,表示绕轴 u \boldsymbol{u} u旋转 θ \theta θ度, q 2 = [ cos 2 θ , sin 2 θ u ] q^2=[\cos2\theta,\sin2\theta\boldsymbol{u}] q2=[cos2θ,sin2θu]表示绕同一轴 u \boldsymbol{u} u连续旋转 θ \theta θ度两次,等同于直接绕轴 u \boldsymbol{u} u旋转 2 θ 2\theta 2θ度
3、旋转应用
对于任意向量 v \boldsymbol{v} v以单位向量定义的旋转轴 u \boldsymbol{u} u旋转 θ \theta θ度后得到 v ′ \boldsymbol{v'} v′,令 v = [ 0 , v ] , v ′ = [ 0 , v ′ ] v=[0,\boldsymbol{v}],v'=[0,\boldsymbol{v'}] v=[0,v],v′=[0,v′],那么 v ′ = q v q − 1 v'=qvq^{-1} v′=qvq−1,其中 q = [ cos θ 2 , sin θ 2 u ] q=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\boldsymbol{u}] q=[cos2θ,sin2θu]
四元数转旋转矩阵:
对于任意向量
v
\boldsymbol{v}
v经过旋转矩阵
R
\boldsymbol{R}
R旋转后得到
v
′
\boldsymbol{v'}
v′
R
=
[
r
11
r
12
r
13
r
21
r
22
r
23
r
31
r
32
r
33
]
\boldsymbol{R}=\begin{bmatrix} r_{11}&r_{12}&r_{13}\\ r_{21}&r_{22}&r_{23}\\ r_{31}&r_{32}&r_{33}\\ \end{bmatrix}
R=
r11r21r31r12r22r32r13r23r33
令
v
=
[
0
,
v
]
,
v
′
=
[
0
,
v
′
]
,
q
=
a
+
b
i
+
c
j
+
d
k
v=[0,\boldsymbol{v}],v'=[0,\boldsymbol{v'}],q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k}
v=[0,v],v′=[0,v′],q=a+bi+cj+dk,那么
v
′
=
q
v
q
−
1
v'=qvq^{-1}
v′=qvq−1,其中
a
=
r
11
+
r
22
+
r
33
+
1
2
b
=
−
r
23
−
r
32
4
a
c
=
−
r
31
−
r
13
4
a
d
=
−
r
12
−
r
21
4
a
a=\frac{\sqrt{r_{11}+r_{22}+r_{33}+1}}{2}\\ b=-\frac{r_{23}-r_{32}}{4a}\\ c=-\frac{r_{31}-r_{13}}{4a}\\ d=-\frac{r_{12}-r_{21}}{4a}
a=2r11+r22+r33+1b=−4ar23−r32c=−4ar31−r13d=−4ar12−r21
旋转矩阵转四元数:
对于任意向量
v
\boldsymbol{v}
v以单位向量定义的旋转轴
u
\boldsymbol{u}
u旋转
θ
\theta
θ度后得到
v
′
\boldsymbol{v'}
v′,令
q
=
a
+
b
i
+
c
j
+
d
k
q=a+b\boldsymbol{i}+c\boldsymbol{j}+d\boldsymbol{k}
q=a+bi+cj+dk,其中
a
=
cos
θ
2
,
b
=
sin
θ
2
u
x
,
c
=
sin
θ
2
u
y
,
d
=
sin
θ
2
u
z
a=\cos\frac{\theta}{2},b=\sin\frac{\theta}{2}u_x,c=\sin\frac{\theta}{2}u_y,d=\sin\frac{\theta}{2}u_z
a=cos2θ,b=sin2θux,c=sin2θuy,d=sin2θuz,那么
v
′
=
R
v
\boldsymbol{v'}=\boldsymbol{R}\boldsymbol{v}
v′=Rv,其中
R
=
[
1
−
2
c
2
−
2
d
2
2
b
c
−
2
a
d
2
a
c
+
2
b
d
2
b
c
+
2
a
d
1
−
2
b
2
−
2
d
2
2
c
d
−
2
a
b
2
b
d
−
2
a
c
2
a
b
+
2
c
d
1
−
2
b
2
−
2
c
2
]
\boldsymbol{R}=\begin{bmatrix} 1-2c^2-2d^2&2bc-2ad&2ac+2bd\\ 2bc+2ad&1-2b^2-2d^2&2cd-2ab\\ 2bd-2ac&2ab+2cd&1-2b^2-2c^2\\ \end{bmatrix}
R=
1−2c2−2d22bc+2ad2bd−2ac2bc−2ad1−2b2−2d22ab+2cd2ac+2bd2cd−2ab1−2b2−2c2
二、外积(升维)
1、定义
点:标量(scalar),0维子空间,无几何拓展,如
s
s
s,具有大小和方向
线:向量(vector),1维子空间,1个方向拓展,如
a
\boldsymbol{a}
a,具有大小和方向
面:双向量(bivector),2维子空间,2个方向拓展,如
a
∧
b
=
−
b
∧
a
\boldsymbol{a}\wedge\boldsymbol{b}=-\boldsymbol{b}\wedge\boldsymbol{a}
a∧b=−b∧a,具有大小和方向
空间:三向量(trivector),3维子空间,3个方向拓展,如
a
∧
b
∧
c
=
−
a
∧
c
∧
b
=
c
∧
a
∧
b
\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}=-\boldsymbol{a}\wedge\boldsymbol{c}\wedge\boldsymbol{b}=\boldsymbol{c}\wedge\boldsymbol{a}\wedge\boldsymbol{b}
a∧b∧c=−a∧c∧b=c∧a∧b,具有大小和方向
区分:对于空间维度来说,内积是降维操作,叉积是保级操作,外积是升维操作。
2、加法
标量:
s
1
+
s
2
s_1+s_2
s1+s2
向量:
a
1
+
a
2
\boldsymbol{a_1}+\boldsymbol{a_2}
a1+a2
双向量:
(
a
1
∧
b
1
)
+
(
a
2
∧
b
2
)
(\boldsymbol{a_1}\wedge\boldsymbol{b_1}) + (\boldsymbol{a_2}\wedge\boldsymbol{b_2})
(a1∧b1)+(a2∧b2)
三向量:
(
a
1
∧
b
1
∧
c
1
)
+
(
a
2
∧
b
2
∧
c
2
)
(\boldsymbol{a_1}\wedge\boldsymbol{b_1}\wedge\boldsymbol{c_1}) + (\boldsymbol{a_2}\wedge\boldsymbol{b_2}\wedge\boldsymbol{c_2})
(a1∧b1∧c1)+(a2∧b2∧c2)
2、乘法
标量:
s
1
∗
s
2
s_1*s_2
s1∗s2
向量:
a
1
∗
a
2
\boldsymbol{a_1}*\boldsymbol{a_2}
a1∗a2
双向量:
(
a
1
∧
b
1
)
∗
(
a
2
∧
b
2
)
(\boldsymbol{a_1}\wedge\boldsymbol{b_1}) * (\boldsymbol{a_2}\wedge\boldsymbol{b_2})
(a1∧b1)∗(a2∧b2)
三向量:
(
a
1
∧
b
1
∧
c
1
)
∗
(
a
2
∧
b
2
∧
c
2
)
(\boldsymbol{a_1}\wedge\boldsymbol{b_1}\wedge\boldsymbol{c_1}) * (\boldsymbol{a_2}\wedge\boldsymbol{b_2}\wedge\boldsymbol{c_2})
(a1∧b1∧c1)∗(a2∧b2∧c2)
3、性质
a
∧
b
=
−
b
∧
a
\boldsymbol{a}\wedge\boldsymbol{b} = -\boldsymbol{b}\wedge\boldsymbol{a}
a∧b=−b∧a
a
∧
(
α
b
∧
β
c
)
=
α
(
a
∧
b
)
+
β
(
a
∧
c
)
\boldsymbol{a}\wedge(\alpha\boldsymbol{b}\wedge\beta\boldsymbol{c}) = \alpha(\boldsymbol{a}\wedge\boldsymbol{b})+\beta(\boldsymbol{a}\wedge\boldsymbol{c})
a∧(αb∧βc)=α(a∧b)+β(a∧c)
(
a
∧
b
)
∧
c
=
a
∧
(
b
∧
c
)
(\boldsymbol{a}\wedge\boldsymbol{b})\wedge\boldsymbol{c} = \boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c})
(a∧b)∧c=a∧(b∧c)
a
∧
b
∧
c
∧
d
=
0
\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c} \wedge\boldsymbol{d} = 0
a∧b∧c∧d=0
三、内积(降维)
1、定义
与原子空间的正交补空间的交集
a
⋅
b
=
∣
a
∣
∣
b
∣
c
o
s
<
a
,
b
>
\boldsymbol{a}\cdot\boldsymbol{b}=|a||b|cos<\boldsymbol{a},\boldsymbol{b}>
a⋅b=∣a∣∣b∣cos<a,b>---------------------------------------------------------------------------------标量
a
⋅
(
b
∧
c
)
=
(
a
⋅
b
)
∧
c
+
(
a
⋅
c
)
∧
b
\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c})=(\boldsymbol{a}\cdot\boldsymbol{b})\wedge\boldsymbol{c}+(\boldsymbol{a}\cdot\boldsymbol{c})\wedge\boldsymbol{b}
a⋅(b∧c)=(a⋅b)∧c+(a⋅c)∧b----------------------------------------------------------------向量
(
a
∧
b
)
⋅
(
c
∧
d
)
=
a
⋅
(
b
⋅
(
c
∧
d
)
)
=
(
a
⋅
d
)
(
b
⋅
c
)
−
(
a
⋅
c
)
(
b
⋅
d
)
(\boldsymbol{a}\wedge\boldsymbol{b})\cdot(\boldsymbol{c}\wedge\boldsymbol{d})=\boldsymbol{a}\cdot(\boldsymbol{b}\cdot(\boldsymbol{c}\wedge\boldsymbol{d}))=(\boldsymbol{a}\cdot\boldsymbol{d})(\boldsymbol{b}\cdot\boldsymbol{c})-(\boldsymbol{a}\cdot\boldsymbol{c})(\boldsymbol{b}\cdot\boldsymbol{d})
(a∧b)⋅(c∧d)=a⋅(b⋅(c∧d))=(a⋅d)(b⋅c)−(a⋅c)(b⋅d)--------------------标量
a
⋅
(
b
∧
c
∧
d
)
=
(
a
⋅
b
)
∧
c
∧
d
−
b
∧
(
a
⋅
c
)
∧
d
+
b
∧
c
∧
(
a
⋅
d
)
\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})=(\boldsymbol{a}\cdot\boldsymbol{b})\wedge\boldsymbol{c}\wedge\boldsymbol{d}-\boldsymbol{b}\wedge(\boldsymbol{a}\cdot\boldsymbol{c})\wedge\boldsymbol{d}+\boldsymbol{b}\wedge\boldsymbol{c}\wedge(\boldsymbol{a}\cdot\boldsymbol{d})
a⋅(b∧c∧d)=(a⋅b)∧c∧d−b∧(a⋅c)∧d+b∧c∧(a⋅d)--------------------标量
2、性质
任何一个子空间与一个trivector做内积得到是该子空间的正交补空间
四、范数
∣
∣
a
∣
∣
2
=
a
⋅
a
||\boldsymbol{a}||^2 = \boldsymbol{a}\cdot\boldsymbol{a}
∣∣a∣∣2=a⋅a
∣
∣
a
∧
b
∣
∣
2
=
(
b
∧
a
)
⋅
(
a
∧
b
)
||\boldsymbol{a}\wedge\boldsymbol{b}||^2 = (\boldsymbol{b}\wedge\boldsymbol{a})\cdot(\boldsymbol{a}\wedge\boldsymbol{b})
∣∣a∧b∣∣2=(b∧a)⋅(a∧b)
∣
∣
a
∧
b
∧
c
∣
∣
=
(
c
∧
b
∧
a
)
⋅
(
a
∧
b
∧
c
)
||\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}|| = (\boldsymbol{c}\wedge\boldsymbol{b}\wedge\boldsymbol{a})\cdot(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})
∣∣a∧b∧c∣∣=(c∧b∧a)⋅(a∧b∧c)
总结:
∣
∣
x
∣
∣
2
=
x
~
⋅
x
||\boldsymbol{x}||^2 = \widetilde{\boldsymbol{x}}\cdot\boldsymbol{x}
∣∣x∣∣2=x
⋅x,其中
x
~
\widetilde{\boldsymbol{x}}
x
为
x
\boldsymbol{x}
x的反转(reverse)
五、对偶(正交补空间)
a
∗
=
b
∧
c
\boldsymbol{a}^* = \boldsymbol{b}\wedge\boldsymbol{c}
a∗=b∧c
(
a
∧
b
)
∗
=
c
(\boldsymbol{a}\wedge\boldsymbol{b})^* = \boldsymbol{c}
(a∧b)∗=c
(
a
∧
b
∧
c
)
∗
=
α
(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^*=\alpha
(a∧b∧c)∗=α
六、单位正交基
单位正交基:{
e
1
,
e
2
,
e
3
\boldsymbol{e_1}, \boldsymbol{e_2},\boldsymbol{e_3}
e1,e2,e3} 体元:
I
=
e
1
∧
e
2
∧
e
3
\boldsymbol{I}=\boldsymbol{e_1}\wedge\boldsymbol{e_2}\wedge\boldsymbol{e_3}
I=e1∧e2∧e3
对于任何一个向量
a
=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
\boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3}
a=a1e1+a2e2+a3e3,则:
a
∗
=
−
a
⋅
I
\boldsymbol{a}^*=-\boldsymbol{a}\cdot\boldsymbol{I}
a∗=−a⋅I,即
a
∗
=
−
a
1
e
2
∧
e
3
−
a
2
e
3
∧
e
1
−
a
3
e
1
∧
e
2
\boldsymbol{a}^*=-a_1\boldsymbol{e_2}\wedge\boldsymbol{e_3}-a_2\boldsymbol{e_3}\wedge\boldsymbol{e_1}-a_3\boldsymbol{e_1}\wedge\boldsymbol{e_2}
a∗=−a1e2∧e3−a2e3∧e1−a3e1∧e2
∣
∣
a
∣
∣
2
=
a
1
2
+
a
2
2
+
a
3
2
||\boldsymbol{a}||^2 = {a_1}^2+{a_2}^2+{a_3}^2
∣∣a∣∣2=a12+a22+a32
∣
∣
a
∗
∣
∣
2
=
∣
∣
a
∣
∣
2
||\boldsymbol{a^*}||^2 = ||\boldsymbol{a}||^2
∣∣a∗∣∣2=∣∣a∣∣2
对于任何两个向量
a
=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
,
b
=
b
1
e
1
+
b
2
e
2
+
b
3
e
3
\boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3},\boldsymbol{b}=b_1\boldsymbol{e_1}+b_2\boldsymbol{e_2}+b_3\boldsymbol{e_3}
a=a1e1+a2e2+a3e3,b=b1e1+b2e2+b3e3,则:
a
∧
b
=
(
a
2
b
3
−
a
3
b
2
)
e
2
∧
e
3
+
(
a
3
b
1
−
a
1
b
3
)
e
3
∧
e
1
+
(
a
1
b
2
−
a
2
b
1
)
e
1
∧
e
2
\boldsymbol{a}\wedge\boldsymbol{b}=(a_2b_3-a_3b_2)\boldsymbol{e_2}\wedge\boldsymbol{e_3}+(a_3b_1-a_1b_3)\boldsymbol{e_3}\wedge\boldsymbol{e_1}+(a_1b_2-a_2b_1)\boldsymbol{e_1}\wedge\boldsymbol{e_2}
a∧b=(a2b3−a3b2)e2∧e3+(a3b1−a1b3)e3∧e1+(a1b2−a2b1)e1∧e2
(
a
∧
b
)
∗
=
(
a
2
b
3
−
a
3
b
2
)
e
1
+
(
a
3
b
1
−
a
1
b
3
)
e
2
+
(
a
1
b
2
−
a
2
b
1
)
e
3
(\boldsymbol{a}\wedge\boldsymbol{b})^*=(a_2b_3-a_3b_2)\boldsymbol{e_1}+(a_3b_1-a_1b_3)\boldsymbol{e_2}+(a_1b_2-a_2b_1)\boldsymbol{e_3}
(a∧b)∗=(a2b3−a3b2)e1+(a3b1−a1b3)e2+(a1b2−a2b1)e3
对于任何三个不共面的向量
a
,
b
,
c
\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}
a,b,c,则:
a
∧
b
∧
c
=
α
(
e
1
∧
e
2
∧
e
3
)
\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c} = \alpha(\boldsymbol{e_1}\wedge\boldsymbol{e_2}\wedge\boldsymbol{e_3})
a∧b∧c=α(e1∧e2∧e3)
∣
∣
a
∧
b
∧
c
∣
∣
2
=
α
2
||\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}||^2 = \alpha^2
∣∣a∧b∧c∣∣2=α2
(
a
∧
b
∧
c
)
∗
=
−
α
(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^* =- \alpha
(a∧b∧c)∗=−α
注意:
(
a
∧
b
)
∗
=
a
×
b
(\boldsymbol{a}\wedge\boldsymbol{b})^*=\boldsymbol{a}\times\boldsymbol{b}
(a∧b)∗=a×b(叉积),
(
a
∧
b
∧
c
)
∗
=
∣
a
,
b
,
c
∣
(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})^*=|\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}|
(a∧b∧c)∗=∣a,b,c∣(混合积)
七、外积下的向量空间
基本元素:
α
\alpha
α(标量),
a
\boldsymbol{a}
a(向量),
b
∧
c
\boldsymbol{b}\wedge\boldsymbol{c}
b∧c(二向量),
d
∧
e
∧
f
\boldsymbol{d}\wedge\boldsymbol{e}\wedge\boldsymbol{f}
d∧e∧f(三向量)
A
=
α
+
a
+
b
∧
c
+
d
∧
e
∧
f
A=\alpha+\boldsymbol{a}+\boldsymbol{b}\wedge\boldsymbol{c}+\boldsymbol{d}\wedge\boldsymbol{e}\wedge\boldsymbol{f}
A=α+a+b∧c+d∧e∧f
八、几何积
1、单位正交基
单位正交基:{
e
1
,
e
2
,
e
3
\boldsymbol{e_1}, \boldsymbol{e_2},\boldsymbol{e_3}
e1,e2,e3}
e
1
2
=
e
2
2
=
e
3
2
=
1
\boldsymbol{e_1^2}=\boldsymbol{e_2^2}=\boldsymbol{e_3^2}=1
e12=e22=e32=1
e
1
e
2
=
−
e
2
e
1
,
e
2
e
3
=
−
e
3
e
2
,
e
3
e
1
=
−
e
1
e
3
\boldsymbol{e_1}\boldsymbol{e_2}=-\boldsymbol{e_2}\boldsymbol{e_1},\boldsymbol{e_2}\boldsymbol{e_3}=-\boldsymbol{e_3}\boldsymbol{e_2},\boldsymbol{e_3}\boldsymbol{e_1}=-\boldsymbol{e_1}\boldsymbol{e_3}
e1e2=−e2e1,e2e3=−e3e2,e3e1=−e1e3
2、单位正交基
3、几何积下的向量空间
基本元素:
α
\alpha
α(标量),
a
\boldsymbol{a}
a(向量),
b
c
\boldsymbol{b}\boldsymbol{c}
bc(二向量),
d
e
f
\boldsymbol{d}\boldsymbol{e}\boldsymbol{f}
def(三向量)
A
=
α
+
a
+
b
c
+
d
e
f
A=\alpha+\boldsymbol{a}+\boldsymbol{b}\boldsymbol{c}+\boldsymbol{d}\boldsymbol{e}\boldsymbol{f}
A=α+a+bc+def,其中
a
=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
\boldsymbol{a}=a_1\boldsymbol{e_1}+a_2\boldsymbol{e_2}+a_3\boldsymbol{e_3}
a=a1e1+a2e2+a3e3,
b
c
=
(
b
c
)
1
e
2
e
3
+
(
b
c
)
2
e
3
e
1
+
(
b
c
)
3
e
1
e
2
\boldsymbol{bc}=(bc)_1\boldsymbol{e_2e_3}+(bc)_2\boldsymbol{e_3e_1}+(bc)_3\boldsymbol{e_1e_2}
bc=(bc)1e2e3+(bc)2e3e1+(bc)3e1e2,
d
e
f
=
(
d
e
f
)
e
1
e
2
e
3
\boldsymbol{def}=(def)\boldsymbol{e_1e_2e_3}
def=(def)e1e2e3
4、定义
a
b
=
(
a
1
b
1
+
a
2
b
2
+
a
3
b
3
)
+
(
a
2
b
3
−
a
3
b
2
)
e
2
e
3
+
(
a
3
b
1
−
a
1
b
3
)
e
3
e
1
+
(
a
1
b
2
−
a
2
b
1
)
e
1
e
2
\boldsymbol{a}\boldsymbol{b}=(a_1b_1+a_2b_2+a_3b_3)+(a_2b_3-a_3b_2)\boldsymbol{e_2e_3}+(a_3b_1-a_1b_3)\boldsymbol{e_3e_1}+(a_1b_2-a_2b_1)\boldsymbol{e_1e_2}
ab=(a1b1+a2b2+a3b3)+(a2b3−a3b2)e2e3+(a3b1−a1b3)e3e1+(a1b2−a2b1)e1e2
注意:
e
1
e
1
=
1
,
e
1
∧
e
1
=
0
\boldsymbol{e_1e_1}=1,\boldsymbol{e_1}\wedge\boldsymbol{e_1}=0
e1e1=1,e1∧e1=0
5、性质
1、
a
∧
b
=
1
2
(
a
b
−
b
a
)
\boldsymbol{a}\wedge\boldsymbol{b}=\frac{1}{2}(\boldsymbol{ab}-\boldsymbol{ba})
a∧b=21(ab−ba)
2、
<
a
,
b
>
=
1
2
(
a
b
+
b
a
)
<\boldsymbol{a},\boldsymbol{b}>=\frac{1}{2}(\boldsymbol{ab}+\boldsymbol{ba})
<a,b>=21(ab+ba)
3、
a
b
=
a
∧
b
+
<
a
,
b
>
\boldsymbol{a}\boldsymbol{b}=\boldsymbol{a}\wedge\boldsymbol{b}+<\boldsymbol{a},\boldsymbol{b}>
ab=a∧b+<a,b>
4、
a
(
b
∧
c
)
=
a
⋅
(
b
∧
c
)
+
a
∧
(
b
∧
c
)
\boldsymbol{a}(\boldsymbol{b}\wedge\boldsymbol{c})=\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c})+\boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c})
a(b∧c)=a⋅(b∧c)+a∧(b∧c)
5、
a
(
b
∧
c
∧
d
)
=
a
⋅
(
b
∧
c
∧
d
)
+
a
∧
(
b
∧
c
∧
d
)
\boldsymbol{a}(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})=\boldsymbol{a}\cdot(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})+\boldsymbol{a}\wedge(\boldsymbol{b}\wedge\boldsymbol{c}\wedge\boldsymbol{d})
a(b∧c∧d)=a⋅(b∧c∧d)+a∧(b∧c∧d)
6、
a
∧
b
∧
c
=
1
6
(
a
b
c
+
b
c
a
+
c
a
b
−
c
b
a
−
b
a
c
−
a
c
b
)
\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c}=\frac{1}{6}(\boldsymbol{abc}+\boldsymbol{bca}+\boldsymbol{cab}-\boldsymbol{cba}-\boldsymbol{bac}-\boldsymbol{acb})
a∧b∧c=61(abc+bca+cab−cba−bac−acb)
一般情况:
a
X
=
a
⋅
X
+
a
∧
X
\boldsymbol{a}\boldsymbol{X}=\boldsymbol{a}\cdot\boldsymbol{X}+\boldsymbol{a}\wedge\boldsymbol{X}
aX=a⋅X+a∧X,其中
X
\boldsymbol{X}
X为向量、二向量或三向量
由
<
a
,
b
>
=
0
⇐
⇒
<\boldsymbol{a},\boldsymbol{b}>=0\Leftarrow\Rightarrow
<a,b>=0⇐⇒
a
,
b
\boldsymbol{a},\boldsymbol{b}
a,b相互垂直可得:
a
b
=
−
b
a
⇐
⇒
\boldsymbol{ab}=-\boldsymbol{ba}\Leftarrow\Rightarrow
ab=−ba⇐⇒
a
,
b
\boldsymbol{a},\boldsymbol{b}
a,b相互垂直
6、逆
a
2
=
∣
∣
a
∣
∣
2
⇒
a
−
1
=
a
∣
∣
a
∣
∣
2
\boldsymbol{a}^2=||\boldsymbol{a}||^2\Rightarrow\boldsymbol{a}^{-1}=\frac{\boldsymbol{a}}{||\boldsymbol{a}||^2}
a2=∣∣a∣∣2⇒a−1=∣∣a∣∣2a
(
a
b
)
−
1
=
b
−
1
a
−
1
\boldsymbol{(ab)}^{-1}=\boldsymbol{b}^{-1}\boldsymbol{a}^{-1}
(ab)−1=b−1a−1
(
a
b
c
)
−
1
=
c
−
1
b
−
1
a
−
1
\boldsymbol{(abc)}^{-1}=\boldsymbol{c}^{-1}\boldsymbol{b}^{-1}\boldsymbol{a}^{-1}
(abc)−1=c−1b−1a−1
(
a
∧
b
)
−
1
=
b
∧
a
∣
∣
a
∧
b
∣
∣
2
(\boldsymbol{a}\wedge\boldsymbol{b})^{-1}=\frac{\boldsymbol{b}\wedge\boldsymbol{a}}{||\boldsymbol{a}\wedge\boldsymbol{b}||^2}
(a∧b)−1=∣∣a∧b∣∣2b∧a
注意:当
a
≠
0
\boldsymbol{a}\neq0
a=0时
a
b
=
a
c
⇒
b
=
c
\boldsymbol{ab}=\boldsymbol{ac}\Rightarrow\boldsymbol{b}=\boldsymbol{c}
ab=ac⇒b=c(仅对于几何积而言成立,对于内积和外积不成立)
九、应用
1、投影与反射
对于直线:
a
∥
=
<
a
,
x
∣
∣
x
∣
∣
>
x
∣
∣
x
∣
∣
=
<
a
,
x
>
x
∣
∣
x
∣
∣
2
=
<
a
,
x
>
x
−
1
\boldsymbol{a}_{\parallel}=<\boldsymbol{a},\frac{\boldsymbol{x}}{||\boldsymbol{x}||}>\frac{\boldsymbol{x}}{||\boldsymbol{x}||}=<\boldsymbol{a},\boldsymbol{x}>\frac{\boldsymbol{x}}{||\boldsymbol{x}||^2}=<\boldsymbol{a},\boldsymbol{x}>\boldsymbol{x}^{-1}
a∥=<a,∣∣x∣∣x>∣∣x∣∣x=<a,x>∣∣x∣∣2x=<a,x>x−1
a
⊥
=
(
a
∧
x
∣
∣
x
∣
∣
)
x
∣
∣
x
∣
∣
=
(
a
∧
x
)
x
∣
∣
x
∣
∣
2
=
(
a
∧
x
)
x
−
1
\boldsymbol{a}_{\perp}=(\boldsymbol{a}\wedge\frac{\boldsymbol{x}}{||\boldsymbol{x}||})\frac{\boldsymbol{x}}{||\boldsymbol{x}||}=(\boldsymbol{a}\wedge\boldsymbol{x})\frac{\boldsymbol{x}}{||\boldsymbol{x}||^2}=(\boldsymbol{a}\wedge\boldsymbol{x})\boldsymbol{x}^{-1}
a⊥=(a∧∣∣x∣∣x)∣∣x∣∣x=(a∧x)∣∣x∣∣2x=(a∧x)x−1
a
T
=
a
∥
−
a
⊥
=
<
a
,
x
>
x
−
1
−
(
a
∧
x
)
x
−
1
=
<
x
,
a
>
x
−
1
+
(
x
∧
a
)
x
−
1
=
x
a
x
−
1
\boldsymbol{a}_T=\boldsymbol{a}_{\parallel}-\boldsymbol{a}_{\perp}=<\boldsymbol{a},\boldsymbol{x}>\boldsymbol{x}^{-1}-(\boldsymbol{a}\wedge\boldsymbol{x})\boldsymbol{x}^{-1}=<\boldsymbol{x},\boldsymbol{a}>\boldsymbol{x}^{-1}+(\boldsymbol{x}\wedge\boldsymbol{a})\boldsymbol{x}^{-1}=\boldsymbol{xax^{-1}}
aT=a∥−a⊥=<a,x>x−1−(a∧x)x−1=<x,a>x−1+(x∧a)x−1=xax−1
对于平面:
a
∥
=
<
a
,
n
∣
∣
n
∣
∣
>
n
∣
∣
n
∣
∣
=
<
a
,
n
>
n
∣
∣
n
∣
∣
2
=
<
a
,
n
>
n
−
1
\boldsymbol{a}_{\parallel}=<\boldsymbol{a},\frac{\boldsymbol{n}}{||\boldsymbol{n}||}>\frac{\boldsymbol{n}}{||\boldsymbol{n}||}=<\boldsymbol{a},\boldsymbol{n}>\frac{\boldsymbol{n}}{||\boldsymbol{n}||^2}=<\boldsymbol{a},\boldsymbol{n}>\boldsymbol{n}^{-1}
a∥=<a,∣∣n∣∣n>∣∣n∣∣n=<a,n>∣∣n∣∣2n=<a,n>n−1
a
⊥
=
(
a
∧
n
∣
∣
n
∣
∣
)
n
∣
∣
n
∣
∣
=
(
a
∧
n
)
n
∣
∣
n
∣
∣
2
=
(
a
∧
n
)
n
−
1
\boldsymbol{a}_{\perp}=(\boldsymbol{a}\wedge\frac{\boldsymbol{n}}{||\boldsymbol{n}||})\frac{\boldsymbol{n}}{||\boldsymbol{n}||}=(\boldsymbol{a}\wedge\boldsymbol{n})\frac{\boldsymbol{n}}{||\boldsymbol{n}||^2}=(\boldsymbol{a}\wedge\boldsymbol{n})\boldsymbol{n}^{-1}
a⊥=(a∧∣∣n∣∣n)∣∣n∣∣n=(a∧n)∣∣n∣∣2n=(a∧n)n−1
a
T
=
a
⊥
−
a
∥
=
(
a
∧
n
)
n
−
1
−
<
a
,
n
>
n
−
1
=
−
(
(
n
∧
a
)
n
−
1
+
<
n
,
a
>
n
−
1
)
=
−
n
a
n
−
1
\boldsymbol{a}_T=\boldsymbol{a}_{\perp}-\boldsymbol{a}_{\parallel}=(\boldsymbol{a}\wedge\boldsymbol{n})\boldsymbol{n}^{-1}-<\boldsymbol{a},\boldsymbol{n}>\boldsymbol{n}^{-1}=-((\boldsymbol{n}\wedge\boldsymbol{a})\boldsymbol{n}^{-1}+<\boldsymbol{n},\boldsymbol{a}>\boldsymbol{n}^{-1})=-\boldsymbol{nan}^{-1}
aT=a⊥−a∥=(a∧n)n−1−<a,n>n−1=−((n∧a)n−1+<n,a>n−1)=−nan−1
2、旋转
a
T
_
u
=
−
u
a
u
−
1
\boldsymbol{a}_{T\_u}=-\boldsymbol{uau}^{-1}
aT_u=−uau−1
a
T
_
v
=
−
v
a
T
_
u
v
−
1
\boldsymbol{a}_{T\_v}=-\boldsymbol{v}\boldsymbol{a}_{T\_u}\boldsymbol{v}^{-1}
aT_v=−vaT_uv−1
因此,
a
T
_
v
=
(
v
u
)
a
(
v
u
)
−
1
\boldsymbol{a}_{T\_v}=(\boldsymbol{vu})\boldsymbol{a}(\boldsymbol{vu})^{-1}
aT_v=(vu)a(vu)−1,令
R
=
v
u
\boldsymbol{R}=\boldsymbol{vu}
R=vu则
a
T
_
v
=
R
a
R
−
1
\boldsymbol{a}_{T\_v}=\boldsymbol{RaR^{-1}}
aT_v=RaR−1
若
u
\boldsymbol{u}
u绕着
l
l
l逆时针旋转
θ
\theta
θ得到
v
\boldsymbol{v}
v,则
a
\boldsymbol{a}
a绕着
l
l
l逆时针旋转
2
θ
2\theta
2θ可以得到
a
T
_
v
\boldsymbol{a}_{T\_v}
aT_v
a
\boldsymbol{a}
a旋转至
b
\boldsymbol{b}
b的旋转矩阵
R
=
c
a
\boldsymbol{R}=\boldsymbol{ca}
R=ca,其中
a
,
b
\boldsymbol{a},\boldsymbol{b}
a,b均为单位向量
c
=
(
a
+
b
)
/
2
∣
∣
a
+
b
)
/
2
∣
∣
=
a
+
b
2
(
1
+
<
a
,
b
>
)
\boldsymbol{c}=\frac{(\boldsymbol{a+b})/2}{||\boldsymbol{a+b})/2||}=\frac{\boldsymbol{a+b}}{\sqrt{2(1+<\boldsymbol{a},\boldsymbol{b}>)}}
c=∣∣a+b)/2∣∣(a+b)/2=2(1+<a,b>)a+b,
R
=
1
+
b
a
2
(
1
+
<
a
,
b
>
)
\boldsymbol{R}=\frac{\boldsymbol{1+ba}}{\sqrt{2(1+<\boldsymbol{a},\boldsymbol{b}>)}}
R=2(1+<a,b>)1+ba
注意:旋转轴垂直于
a
\boldsymbol{a}
a和
b
\boldsymbol{b}
b,并且当
a
\boldsymbol{a}
a和
b
\boldsymbol{b}
b相反时不适用
面元:
I
=
a
∧
b
∣
∣
a
∣
∣
∣
∣
b
∣
∣
s
i
n
θ
\boldsymbol{I}=\frac{\boldsymbol{a}\wedge\boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||sin\theta}
I=∣∣a∣∣∣∣b∣∣sinθa∧b
R
=
b
a
=
<
b
,
a
>
+
b
∧
a
=
<
a
,
b
>
−
a
∧
b
=
c
o
s
θ
−
s
i
n
θ
a
∧
b
∣
∣
a
∣
∣
∣
∣
b
∣
∣
s
i
n
θ
=
c
o
s
θ
−
I
s
i
n
θ
=
e
x
p
(
−
θ
I
)
\boldsymbol{R}=\boldsymbol{ba}=<\boldsymbol{b},\boldsymbol{a}>+\boldsymbol{b}\wedge\boldsymbol{a}=<\boldsymbol{a},\boldsymbol{b}>-\boldsymbol{a}\wedge\boldsymbol{b}=cos\theta-sin\theta\frac{\boldsymbol{a}\wedge\boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||sin\theta}=cos\theta-\boldsymbol{I}sin\theta=exp(-\theta\boldsymbol{I})
R=ba=<b,a>+b∧a=<a,b>−a∧b=cosθ−sinθ∣∣a∣∣∣∣b∣∣sinθa∧b=cosθ−Isinθ=exp(−θI)