【GNN】R-GCN:GCN 在知识图谱中的应用

本文介绍了R-GCN,一种适用于关系网络的图卷积网络模型,尤其在知识图谱的链接预测和实体分类任务中。R-GCN通过考虑边的类型和方向,扩展了GCN的框架。文章详细阐述了R-GCN的前向传播模型、正则化策略以及在实体分类和链接预测任务中的应用。实验结果表明,R-GCN在多个数据集上表现出良好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关注公众号跟踪最新内容:阿泽的学习笔记

阿泽的学习笔记

今天学习的是阿姆斯特丹大学 Michael Schlichtkrull 大佬和 Thomas N. Kipf 大佬于 2017 年合作的一篇论文《Modeling Relational Data with Graph Convolutional Networks》,目前引用超 400 次,虽然这篇文章只是发到了 C 类会议,但论文中提出的 R-GCN 无疑开创了使用 GCN 框架去建模关系网络的先河。(只发到 C 可能是因为 R-GCN 表现不太好)

这篇论文主要有两大贡献:

  1. 证明了 GCN 可以应用于关系网络中,特别是链接预测和实体分类中;
  2. 引入权值共享和系数约束的方法使得 R-GCN 可以应用于关系众多的网络中。

1.Introduction

存储知识的知识库常用于多种应用,包括问答、信息检索等。但即使是最大的知识库(如Yago、Wiki等)也存在很多缺失信息,这种不完整性会影响到下游应用。而预测知识库中的缺失信息是统计关系学习(statistical relational learning,以下简称 SRL)的主要内容。

假设知识库主要以三元组的形式(主语、谓语、宾语)进行存储。比如说,Mikhail 在 Vaganova 学院上学,我们把 Mikhail 和 Vaganova 学院称为实体,受教育称为关系,每个实体会有自己的类型,这样便构成一张知识网络:

这篇论文主要考虑两个任务,包括链接预测实体分类。在这种情况下,可以对很多缺失信息进行补全,比如说:知道 Mikhail 在 Vaganova 学院受过教育,我们便可以知道他居住在俄罗斯(RUS),并且有自己的 label (如图中红色部分)。

根据这种想法,作者设计了一个编码器模型,并将其应用于这两个任务中,简单来说:

  • 对于实体分类来说,将在编码器后面接一个 softmax 分类器用于预测节点的标签;
  • 对于链路预测来说,可以后面接一个解码器,将分类器视为自编码器,从而完成节点的预测。

2.R-GCN

2.1 RGCN

首先,目前的 GCN 可以视为一个简单可微的消息传递框架的特殊情况:
h i l + 1 = σ ( ∑ m ∈ M i g m ( h i l , h j l ) ) h_i^{l+1} = \sigma \bigg( \sum_{m\in M_i} g_m(h_i^{l}, h_j^l ) \bigg) \\ hil+1=σ(mMigm(hil,hjl))
其中, h i l h_i^l hil 表示隐藏层 l 的节点 v i v_i vi g m ( ⋅ , ⋅ ) g_m(\cdot,\cdot) gm(,) 表示消息传入; σ ( ⋅ ) \sigma(\cdot) σ() 表示激活函数。

写的具体一点的话 g m ( h i , h j ) = W h j g_m(h_i,h_j) = Wh_j gm(hi,hj)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值