i7+GTX1660Ti电脑安装PaddlePaddle-GPU

0. 环境
笔记本win10
NVIDIA GeForce GTX 1660 Ti

1. 安装cuda tool kit
paddlepaddle支持cuda 11.2 11.1 11.0 10.2,提示非安培架构的GPU,推荐使用CUDA10.2

https://developer.nvidia.com/cuda-toolkit-archive
选择10.2下载并安装

确认显卡驱动版本:
到这页面查看cuda driver要求的显卡驱动版本>=441.22:https://docs.nvidia.com/cuda/archive/10.2/cuda-toolkit-release-notes/index.html
右键桌面 -> NVIDIA控制面板 -> 系统信息 -> 看到驱动程序版本是472.47满足要求

安装cuda_10.2.89_441.22_win10.exe
安装cuda_10.2.1_win10.exe
安装cuda_10.2.2_win10.exe

2. cudnn
https://developer.nvidia.com/rdp/cudnn-archive
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-windows

2.1 zlib
下载并解压到D盘:http://www.winimage.com/zLibDll/zlib123dllx64.zip

Add the directory path of zlibwapi.dll to the environment variable PATH.
右键我的电脑 -> 高级系统设置 -> 环境变量 -> 编辑Path -> 添加D:\Programs\zlib123dllx64\dll_x64

2.2 安装


\cuda\cudnn-10.2-windows10-x64-v7.6.5.32\cuda
复制到
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2

把C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2添加到PATH
右键我的电脑 -> 高级系统设置 -> 环境变量 -> 编辑Path -> 添加C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2

3. paddlepaddle
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/windows-pip.html

目前飞桨支持的环境
Windows 7/8/10 专业版/企业版 (64bit)
GPU版本支持CUDA 10.1/10.2/11.0/11.1/11.2,且仅支持单卡
Python 版本 3.6+/3.7+/3.8+/3.9+ (64 bit)
pip 版本 20.2.2或更高版本 (64 bit)

3.1 python3.9
https://www.python.org/downloads/windows/
执行完安装包后添加环境变量D:\Programs\Python\Python39

3.2 再次确认cuda + cudnn版本
CUDA 工具包10.1/10.2 配合 cuDNN v7.6.5

3.3 CUDA10.2的PaddlePaddle
注意baidu的pypi境外无法访问。
python -m pip install paddlepaddle-gpu==2.2.2 -i https://mirror.baidu.com/pypi/simple

4. 验证
python 进入python解释器,输入
import paddle ,再输入 
paddle.utils.run_check()

 

### DeepSeek-R1 不同规模项目所需电脑硬件配置 对于运行不同规模的 DeepSeek-R1 模型,硬件需求会有所不同。具体来说: #### 小规模模型 (如 7B 参数) 为了运行较小版本的 DeepSeek-R1 模型(例如 7B 参数),推荐如下配置[^1]: - **CPU**: 至少 Intel i5 或同等性能处理器 - **GPU**: 建议配备至少8GB 显存的 GPU 设备,比如 NVIDIA GTX 1660 Ti 或更高级别 - **内存**: 推荐 16 GB 及以上 RAM - **存储空间**: 需要足够的 SSD 存储来安装软件环境以及加载数据集;建议最少有 256 GB 的可用空间 此级别的硬件可以满足日常开发测试的需求。 #### 中等规模模型 (如 14B 参数) 当选择中等大小的 DeepSeek-R1 版本时(例如 14B 参数),则需要更强力的计算资源: - **CPU**: 类似于 Intel Core i7 或更高规格多核心处理单元 - **GPU**: 要求具备更多显存容量的支持,像NVIDIA RTX 3090/4070S这类拥有超过16GB VRAM 的图形加速卡较为理想 - **内存**: 容量应达到 32 GB 或者更大 - **硬盘**: 同样强调快速读写的固态驱动器,并预留充足的空间用于存放大型文件和缓存资料 这样的设置能够更好地应对复杂的训练任务并提高效率。 #### 大规模模型 (如 70B 参数及以上) 针对非常庞大的 DeepSeek-R1 架构(例如 70B 参数甚至更大),则需考虑顶级的工作站级设备或集群解决方案[^2]: - **CPU**: 使用高端多线程 CPU 如 AMD Ryzen Threadripper Pro 系列或是英特尔至强系列服务器级别产品 - **GPU**: 单张或多张高性能专业级 GPU 组合,每片至少具有24GB以上的专用视频RAM,例如 NVIDIA A100 Tensor Core GPUs - **内存**: 总计不少于 128 GB DDR4/DDR5 ECC Registered DIMMs - **存储系统**: 提供 PB 级别的高速网络附加存储(NAS)或者分布式文件系统支持海量数据交换 这些条件适用于科研机构、企业数据中心等场景下的大规模机器学习研究工作。 ```bash # 示例命令行启动特定参数量的 DeepSeek-R1 模型 ollama run deepseek-r1:14b ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值