我们知道在图像分类任务中,较大的batch size有助于提升分类性能,那么我们的问题是较大的batch size是否能提升GAN的性能呢?
有人或许觉得这个答案应该是肯定的。毕竟大多数GAN中,discriminator就是一个图像分类器。如果大的batch size能够对梯度噪声有一定减缓作用的,那么它应该可以加速训练过程。
但是,GAN还有一个问题是普通分类器所没有的:GAN的训练可能会发散(损失是震荡的),而不像普通分类器那样理论上可以收敛到某一个点(如损失为0).基于此,我们可以提出新的问题:我们应该如何调整GAN中的batch size?梯度噪声在训练GAN的过程中有多大的作用?GAN的训练是否可以通过调整batch size来优化呢?
目前已经有些实验表明提高batch size有助于提高生成图片的质量,也有助于减少训练的时间(可见参考论文【1】)。如果这个现象是普遍的话,这表明在GAN训练过程中梯度噪声是一个显著的影响因素。但是目前这并没有被大量研究,我们相信这个问题仍然是值得做的。
大的batch size是否有助于训练呢?论文【2】似乎说明了它似乎比其他GAN有更好的收敛特性。但是他们增加batch size是因为想对更多的训练数据做配准。我们认为有可能这会是一个潜在的方案来提升GAN的训练。
参考文献