两个重要极限_微积分之函数,函数极限与连续

80c0bc301fa5c35062a5f20e880448b9.png

华罗庚先生在他的《高等数学引论》一书的前言当中谈到自己的教学方法(在我看来, 其实也是一种学习方法):

我讲书喜欢埋些伏笔, 把有一些重要概念,重要方法尽早的提出. 并且不止一次的提出. 目的在于将来进一步学习的时候, 会较易接受高深的方法......
我也喜欢 生书熟讲, 熟书生温的方法. 似乎是在温熟书, 但把新的东西讲进去了, 因为一般来讲, 生书比旧课, 真正原则性的添加并不太多的缘故. 另找一条线索, 把旧东西贯彻起来, 这样的温习方法,容易发现我们究竟有那些主要环节没有懂透......

这个专栏中所写的东西, 我努力参考多种资料, 也学着 Rudin 的线索来把大家熟悉的概念温习一遍. 所述或有错漏繁杂之处, 希望大家多提意见, 一起改进.

下面开始这一篇专栏的正文吧!


现在开始进入函数的部分, 我们先了解一下函数的定义. 一般的关于函数的描述性的定义,来自于狄利克雷, 我们已经很熟悉了. 这里将使用集合来更严格的定义函数的概念.

函数的定义

要用集合的语言来定义函数, 我们要用集合的语言来描述"关系"这个概念, 为此我们需要"序偶"的概念(N. Wiener 给出了序偶定义的一个精确的描述, 具体的可参考相关文献). 默认我们已经对集合的概念以及运算很熟悉了.

* 以下一部分可以跳过

这里我们仅用不严格的直观的语言来描述序偶.

[序偶]
是两个集合, 任取
两个元素, 按顺序放在一起构成序偶, 表示为
. 前面的
称为序偶
第一坐标 , 后面的
称为这个序偶的 第二坐标 .

关于序偶的一个基本事实是: 两个序偶相等, 当且仅当两个序偶具有相同的第一坐标与第二坐标.

[关系及其逆]
是一个 关系(relationship) , 当且仅当对于
的每个元
, 存在
,使得
. 换句话说 一个关系是一个类, 其元素为序偶 . 一个关系的逆, 是通过对调这个关系中的每一个序偶的两个坐标的顺序而得到的.

最简单的一个关系,是笛卡尔积.

两个关系

,
的合成
,定义为: 对于某个
,
, 而
的所有序偶
构成的集合.

关于"关系"的更多的内容, 可以参考任意一本抽象代数教材. 在此不作为主题讨论.

a5dac4a5c97e8d38460c6b6ed8fcd1f3.png

由狄利克雷给出的函数定义这样说: 一个函数(或称由

的一个映射
)是这样一个规则, 它使得
中的每一个元素在
中都有与之唯一对应的
.

函数的图像可以定义为集合

笛卡尔积的
子集. 函数和函数的图像显然是互相确定的. 用数学语言就是: 设
是两个集合, 令
的子集, 并且
中的元素
满足: 对于每一个
, 只有一个
. 由此我们就定义了一个函数. 简洁的描述如下:
[函数] 一个函数
, 是一个有序三元组
, 其中
, 满足: 对于每一个
, 只有一个
.

换句话说, 一个函数, 是使得没有两个不同的元具有相同的第一坐标的一种关系.

Too much for the definition of function......回到数学分析的视野里来.

实数空间上, 我们有六类基本初等函数, 分别是:

  • 常数函数
    ;
  • 幂函数
  • 指数函数
    ,
    为某一固定常数;
  • 对数函数
    , 对数函数是指数函数的反函数;
  • 三角函数 三角函数有三个,正弦
    , 余弦
    , 正切
    ;
  • 反三角函数 反正先
    , 反余弦
    , 反正切
    .

由基本初等函数进行四则运算以及复合运算得到的函数称为初等函数.

这些函数读者在高中应该很熟悉了, 对于这些函数的很多性质也有了一定的了解. 下面我们探讨一般的(实或复变量)函数的性质,对于向量值函数,以及更一般的任意度量空间上的函数, 留待以后讨论. 我们从函数极限的定义开始.


函数极限

为度量空间, 设
,
映入
中. 而
的极限点. 我们说, 当
时, 函数
极限,表示为

就是存在点
, 具有性质: 当
,
,

对于满足

的一切
成立.
分别表示
中的距离.

这个定义是一般的. 对于实函数的特殊情况, 比如一元实函数($X,Y$为实直线), 只要定义度量空间上的范数为绝对值, 就变成了我们常见的的函数极限的定义.

我们已经学过了数列极限的定义, 可以以此改写函数极限定义, 也就是:

[海涅(Heine)定理]
定义如上,
当且仅当: 对于
中满足

的每个序列
, 都有

成立.

和数列极限类似, 函数在一点处有极限, 则极限必唯一.

上的复函数, 函数的四则运算按照一般的方法定义, 有极限的四则运算性质:
,
为度量空间, 而
的极限点.
上的复函数, 并且

那么
-(a)
;

-(b)
;

-(c) 若
.

Note: 特别的,若

,
是由
映入
的函数, 则可以如向量一般定义加法, 乘法和数乘运算, 以上定理中的(a)项依然成立, (b)项则改为
.

的一个子集,
,
的结构允许我们引入函数在一点处的
单侧极限的概念. 这个概念将在后面用到.

对于

, 我们称集
为点
-邻域(右
-邻域).
是定义在
上的函数. 若当
,
,

对于一切落在
的左
-邻域(右
-邻域)中的
成立, 则称
为函数
在点
处的左极限(右极限).记为

显然, 实函数

在一点
处连续, 当且仅当
在这一点处的左极限与右极限均存在,且左右极限相等.

函数连续性

连续性这一重要的性质我们已经在 R^n 上的拓扑回顾 中介绍了, 在这里,再用函数极限的语言描述一遍, 接着直接给出连续函数的一些性质.

为度量空间, 设
,
映入
中. 而
的极限点. 则$f$在
处连续, 当且仅当

如果
上的每一点都连续, 就说
函数
上连续.

Note: 这里定义了在一个度量空间

的子集
上定义的函数的连续概念.而余集
在这个定义中并不起到任何作用. 在一些情况下, 为了方便讨论, 可以直接讨论从一个度量空间到另一个度量空间的映射.

R^n 上的拓扑回顾 中我们已经给出了连续函数的一些性质, 重述并罗列如下:

  1. 是度量空间
    上的(实或复)的连续函数, 那么,
    ,
    ,
    (当
    )均在
    上连续;
  2. 函数
    上连续, 在
    上的限制也连续.
  3. 两个连续函数的合成(复合)函数连续;
  4. 连续函数的逆映射连续;
  5. 向量值函数连续当且仅当其每一分量函数都连续.
  6. 是把度量空间
    映入度量空间
    内的连续映射,
    的一个连通子集, 则
    是连通的. 特别的, 任意区间
    是连通的, 那么定义在其上的连续实函数具有
    介值性, 也就是说连续实函数能取得一个区间中的一切中间值.

连续的概念是从单个点上定义的, 从一个点到一个集, 由定义知道, 对于集中的每个点, 都有一个依赖于所选择的点的

. 对于函数在一个集上的连续, 数学家创造了了一个更强的(具有重要作用的)定义:
一致连续.
[一致连续]
是把度量空间
映入度量空间
内的映射. 称
一致连续, 当
,
,
, 有

每一个一致连续的函数都是连续的, 连续却不一定一致连续, 不过在紧集上, 连续和一致连续则是等价的(比如,我们熟悉的命题: 闭区间上的连续实函数在该闭区间上一致连续). 作为一个更强的性质, 一致连续函数有哪些性质呢?

在度量空间
上一致连续, 那么

-
上有界;

- 令
, 则
, 使得
.

函数可以在一点处连续, 相反的情况我们称函数这一点处间断.

之前我们对

的子集
上定义的函数引入了单侧极限的概念, 由此, 可以将函数在一点处间断的情况通常分为两种:
对于定义在
上的函数
, 其在
间断. 称
第一类间断点, 当
均存在. 其他情况称为
第二类间断点.

对于第一类间断点, 若

,也称
可去间断点; 若
,则可称为
跳跃点.(函数
的值(甚至无定义)无关紧要.)

例子

这里我们给出一些例子, 来加深大家对连续的理解. 在以下例子中,

为度量空间.

(a)

的平方根函数, 是连续的.

证明: 对于

中任意取定的
,
. 若
,取
, 即满足

.

否则, 可以取

,那么,
,

(b) 向下取整函数

,在
连续, 在
不连续.

(c) 狄利克雷函数

定义为:
处处不连续.

(d)

处连续, 且
. 则存在
的一个邻域
,使得
,
.

(e) 函数

称为
Lipschitz 连续, 当对于常数大于
的常数
, 有不等式

Lipschitz 连续的函数均是连续的, 而且是一致连续}的. 注意这个命题得逆命题并不成立.

证明: 任意给定

, 令
. 由连续的定义可以直接得到
的连续性.注意到这里的
与所取
无关, 一致连续是显然的.

(c) 常值函数是 Lipschitz 连续的.

(g) 恒等映射函数是 Lipschitz 连续.

(h) 对于定义在

上的函数
,
, 均为 Lipschitz 连续.

(i)

为一个赋范向量空间. 那么其范数函数

是 Lipschitz 连续的.

证明: 由三角不等式,可以得到命题.


未来几周文章预告: 微分法; Banach 不动点定理; R-S积分...

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值