torch.nn.Module 层介绍

torch.nn.Module 是 PyTorch 的核心模块之一,它是所有神经网络层的基类。任何自定义的神经网络、层(layer)、容器(container)都可以继承自 torch.nn.Module,并通过重载其方法来实现具体的功能。通过 torch.nn.Module,你可以轻松管理模型的参数、结构以及前向传播过程。

1. torch.nn.Module 的基本功能

  • 参数管理torch.nn.Module 可以自动追踪网络层中的所有可学习参数(如权重和偏置)。这些参数会在训练时自动更新。
  • 前向传播:通过重写 forward 方法来定义网络的前向传播逻辑。
  • 模块嵌套:支持将其他 Module 作为子模块,构建更复杂的模型。这样不仅能实现模块化设计,还能方便地组织和管理参数。

2. 如何定义一个自定义的 Module

使用 torch.nn.Module 时,通常需要继承它,并实现 __init__(初始化)和 forward(前向传播)方法。

例子:定义一个简单的全连接神经网络

import torch
import torch.nn as nn

class SimpleNN(nn.Module):
    def __init__(self):
        supe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值