李宏毅机器学习——分类

分类

信用评分——是否借款
医疗诊断——什么病
字迹识别——什么字
人脸识别——什么人

How

用回归来分类?不合适,离群点会影响回归结果
在这里插入图片描述
分类的角度应该是绿色线为分界,用回归的准则为了减小误差会得到紫色线

Generative Model

Pokemon例子:

训练集:79water,61normal
P ( C 1 ) = 0.56 , P ( C 2 ) = 0.44 P(C_1)=0.56,P(C_2)=0.44 P(C1)=0.56,P(C2)=0.44

高斯分布
f μ , Σ ( x ) = 1 ( 2 π ) D / 2 1 ∣ Σ ∣ 1 / 2 exp ⁡ { − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) } f_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} fμ,Σ(x)=(2π)D/21Σ1/21exp{21(xμ)TΣ1(xμ)}

根据数据估计均值和协方差,构造高斯分布,极大似然估计
算出 μ ∗ , Σ ∗ = arg ⁡ max ⁡ μ , Σ L ( μ , Σ ) \mu^{*}, \Sigma^{*}=\arg \max _{\mu, \Sigma} L(\mu, \Sigma) μ,Σ=argμ,ΣmaxL(μ,Σ) μ ∗ = 1 79 ∑ n = 1 79 x n Σ ∗ = 1 79 ∑ n = 1 79 ( x n − μ ∗ ) ( x n − μ ∗ ) T \mu^{*}=\frac{1}{79} \sum_{n=1}^{79} x^{n} \quad \Sigma^{*}=\frac{1}{79} \sum_{n=1}^{79}\left(x^{n}-\mu^{*}\right)\left(x^{n}-\mu^{*}\right)^{T} μ=791n=179xnΣ=791n=179(xnμ)(xnμ)T

再将新的点 x x x 带入
Probability from Class:
P ( x ∣ C 1 ) P(x|C_1) P(xC1) P ( C 1 ∣ x ) = P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P\left(C_{1} | x\right)=\frac{P\left(x | C_{1}\right) P\left(C_{1}\right)}{P\left(x | C_{1}\right) P\left(C_{1}\right)+P\left(x | C_{2}\right) P\left(C_{2}\right)} P(C1x)=P(xC1)P(C1)+P(xC2)P(C2)P(xC1)P(C1)

模型修正:共用相同的协方差矩阵(加权一下),减小模型参数,减小过拟合
此时的最大似然函数为 L ( μ 1 , μ 2 , Σ ) L\left(\mu^{1}, \mu^{2}, \Sigma\right) L(μ1,μ2,Σ) 均值和之前一样,协方差加权 μ 1  and  μ 2  is the same  Σ = 79 140 Σ 1 + 61 140 Σ 2 \mu^{1} \text { and } \mu^{2} \text { is the same } \quad \Sigma=\frac{79}{140} \Sigma^{1}+\frac{61}{140} \Sigma^{2} μ1 and μ2 is the same Σ=14079Σ1+14061Σ2结果变成了线性模型

总结

三步法:

  1. 模型(概率分布)
  2. 评价——寻找均值和协方差使得最大化likelihood
  3. Find the best function
    某个样本的各个特征(dimension)都是独立的,就是朴素贝叶斯
    后验概率 P ( C 1 ∣ x ) = σ ( z ) P\left(C_{1} | x\right)=\sigma(z) P(C1x)=σ(z) z = ln ⁡ ∣ Σ 2 ∣ 1 / 2 ∣ Σ 1 ∣ 1 / 2 − 1 2 x T ( Σ 1 ) − 1 x + ( μ 1 ) T ( Σ 1 ) − 1 x − 1 2 ( μ 1 ) T ( Σ 1 ) − 1 μ 1 + 1 2 x T ( Σ 2 ) − 1 x − ( μ 2 ) T ( Σ 2 ) − 1 x + 1 2 ( μ 2 ) T ( Σ 2 ) − 1 μ 2 + ln ⁡ N 1 N 2 \begin{aligned} z=& \ln \frac{\left|\Sigma^{2}\right|^{1 / 2}}{\left|\Sigma^{1}\right|^{1 / 2}}-\frac{1}{2} x^{T}\left(\Sigma^{1}\right)^{-1} x+\left(\mu^{1}\right)^{T}\left(\Sigma^{1}\right)^{-1} x-\frac{1}{2}\left(\mu^{1}\right)^{T}\left(\Sigma^{1}\right)^{-1} \mu^{1} \\ &+\frac{1}{2} x^{T}\left(\Sigma^{2}\right)^{-1} x-\left(\mu^{2}\right)^{T}\left(\Sigma^{2}\right)^{-1} x+\frac{1}{2}\left(\mu^{2}\right)^{T}\left(\Sigma^{2}\right)^{-1} \mu^{2}+\ln \frac{N_{1}}{N_{2}} \end{aligned} z=lnΣ11/2Σ21/221xT(Σ1)1x+(μ1)T(Σ1)1x21(μ1)T(Σ1)1μ1+21xT(Σ2)1x(μ2)T(Σ2)1x+21(μ2)T(Σ2)1μ2+lnN2N1
    当协方差矩阵一致时 z = ( μ 1 − μ 2 ) T Σ − 1 w T T − 1 2 ( μ 1 ) T ( Σ 1 ) − 1 μ 1 + 1 2 ( μ 2 ) T ( Σ 2 ) − 1 μ 2 + ln ⁡ N 1 N 2 b z=\frac{\left(\mu^{1}-\mu^{2}\right)^{T} \Sigma^{-1}}{w^{T}}^{T} \frac{-\frac{1}{2}\left(\mu^{1}\right)^{T}\left(\Sigma^{1}\right)^{-1} \mu^{1}+\frac{1}{2}\left(\mu^{2}\right)^{T}\left(\Sigma^{2}\right)^{-1} \mu^{2}+\ln \frac{N_{1}}{N_{2}}}{\mathrm{b}} z=wT(μ1μ2)TΣ1Tb21(μ1)T(Σ1)1μ1+21(μ2)T(Σ2)1μ2+lnN2N1 P ( C 1 ∣ x ) = σ ( w ⋅ x + b ) P\left(C_{1} | x\right)=\sigma(w \cdot x+b) P(C1x)=σ(wx+b)
    由此引出了罗基斯特回归
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值