线性代数的理解

矩阵

矩阵代表一个特定的线性变换
在这里插入图片描述
相当于用原来的scalars对新的基进行线性组合

非方阵

列空间的维数与输入空间的维数相等,即矩阵有几列说明输入空间的向量有几维(也等于基向量的个数)

行列式

数值代表面积(体积)的变化,符号代表空间是否被翻转。
行列式为0说明矩阵变换降维了,也说明矩阵不可逆,也表明会有一系列原来不是零向量的向量落到了零向量的位置,所有这些向量的集合构成了零空间

列空间的维数

基变换

假设 A A A 为任意坐标系在正坐标系中的表示, v v v为在任意坐标系中的scalars, A v Av Av得到的为正坐标系下该向量的坐标。
把正坐标系下的线性变换翻译成变换基的坐标系下的变换,比如要在新坐标系旋转90度,可进行 A − 1 M A A^{-1}MA A1MA 线性变换,其中 M M M 为正坐标系下的旋转变换。

特征向量和特征值

特征向量就是经过线性变换后它仍然在经过它原先位置的直线,只是经过压缩或者拉伸,即
A v = λ I v Av=\lambda Iv Av=λIv ( A − λ I ) v = 0 (A - \lambda I)v=0 (AλI)v=0如果等式成立,并且有非0的v向量,则一定存在降维,所以 ( A − λ I ) (A - \lambda I) (AλI)的行列式应该为0,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值