李宏毅机器学习——半监督学习

定义

半监督学习:存在无标签数据,通常需要一些假设

生成式模型

EM算法
Step1: 计算无标签数据先验概率 P θ ( C 1 ∣ x u ) P_{\theta}\left(C_{1} | x^{u}\right) Pθ(C1xu)Step2:更新模型
在这里插入图片描述

Low density separation

self-training

Repeat:

  • 用已有标签数据训练模型
  • 用模型去得到无标签数据的pseudo-label
  • 将一些无标签数据添加到有标签数据中

如果使用神经网络,soft label无效
在这里插入图片描述

Entropy-based 正则化

E ( y u ) = − ∑ m = 1 5 y m u ln ⁡ ( y m u ) E\left(y^{u}\right)=-\sum_{m=1}^{5} y_{m}^{u} \ln \left(y_{m}^{u}\right) E(yu)=m=15ymuln(ymu)
Entropy尽可能小 L = ∑ x r C ( y r , y ^ r ) + λ ∑ x u E ( y u ) \begin{aligned} L =\sum_{x^{r}} C\left(y^{r}, \hat{y}^{r}\right) +\lambda \sum_{x^{u}} E\left(y^{u}\right) \end{aligned} L=xrC(yr,y^r)+λxuE(yu)

半监督SVM

穷举所有可能的标签
每种可能做一个SVM
选择largest margin和least error

Smoothness假设

connected by a high density path

Cluster and then label

Grapg-based Approach

  1. 定义相似度
  2. 建图
  • KNN
  • e-Neighborhood
  1. Edge Weight 和相似度成比例
    高斯半径基函数 s ( x i , x j ) = exp ⁡ ( − γ ∥ x i − x j ∥ 2 ) s\left(x^{i}, x^{j}\right)=\exp \left(-\gamma\left\|x^{i}-x^{j}\right\|^{2}\right) s(xi,xj)=exp(γxixj2)

优点:传递性
定义smoothness
:两两之间的标签差平方加权
S = 1 2 ∑ i , j w i , j ( y i − y j ) 2 = y T L y S=\frac{1}{2} \sum_{i, j} w_{i, j}\left(y^{i}-y^{j}\right)^{2} = y^TLy S=21i,jwi,j(yiyj)2=yTLy 其中,L是graph Laplacian = D - W
最终的目标函数 L = ∑ x r C ( y r , y ^ r ) + λ S L=\sum_{x^{r}} C\left(y^{r}, \hat{y}^{r}\right)+\lambda S L=xrC(yr,y^r)+λS后面一项类似正则化

Better Representation

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值