python 单应性矩阵实现

单应性变换的目标是通过给定的几个点(通常是4对点)来得到单应性矩阵。推导https://download.csdn.net/download/qq_27481087/20065885

import numpy as np

fp = np.array([[188, 261, 587, 542],
               [124, 308, 266, 65]])
tp = np.array([[0, 0, 640, 640],
               [0, 640, 480, 0]])
nbr_correspondences = fp.shape[1]
print(nbr_correspondences)
A = np.zeros((2 * nbr_correspondences, 9))
print(A)
for i in range(nbr_correspondences):
       A[2 * i] = [-fp[0][i], -fp[1][i], -1, 0, 0, 0,
                  tp[0][i] * fp[0][i], tp[0][i] * fp[1][i], tp[0][i]]
       A[2 * i + 1] = [0, 0, 0, -fp[0][i], -fp[1][i], -1,
                  tp[1][i] * fp[0][i], tp[1][i] * fp[1][i], tp[1][i]]
U, S, V = np.linalg.svd(A)
H = V[8].reshape((3, 3))
print(H)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值