二、矩阵的掩膜操作

一、获取图像像素指针

方法一、
主要用到的函数是

Mat.ptr<uchar>(int i = 0)

它的作用是得到图像矩阵的的开始地址,可以跟据图像的储存的关系:
单通道图像:

行列 column0 column1 columnn
row0 piexl(0,0) piexl(0,1) piexl(0,n)
row1 piexl(1,0) piexl(1,1) piexl(1,n)
rowm piexl(m,0) piexl(m,1) piexl(m,n)

RGB图像格式与上述相同,不过一个像素点由三个颜色分量表示。

//单通道图像为例:
const uchar * current = my_image.ptr<uchar>(row);//获取第row行地址指针
piexl_row_col = current[column];//得到第row行第column列像素的地址

//RGB图像操作:
//获取图像的Size与channel
int cols = src.cols * src.channels();
int offsetx = src.channels();
int rows = src.rows;

for (int row = 1; row < rows - 1; row++)
{
    //等到行和列的地址
    const uchar * previous = src.ptr<uchar>(row - 1);
    const uchar * carrent = src.ptr<uchar>(row);
    const uchar * next = src.ptr<uchar>(row + 1);
    uchar * output = dst.ptr<uchar>(row);

    for (int col = offsetx; col < cols; col++)
    {
        //掩膜处理
        output[col] = saturate_cast<uchar>(carrent[col] * 5 - carrent[col - offsetx] - carrent[col + offsetx] - previous[col] - next[col]);
    }
}

RGB图像操作例子中有一个常用的函数:

saturate_cast<uchar>

这个函数的功能是确保像素值在uchar类型数据允许范围之内

  • saturate_cast(-100),函数返回0
  • saturate_cast(280),函数返回255
  • saturate_cast(100),函数返回100

二、掩膜操作

掩膜操作也可以成为卷积操作,就是把kernel(核)与图像卷积
如果把kernel定义为:

I(i,j)=5I(i,j)[I(i,j1)+I(i1,j)+I(i+1,j)+I(i,j+1)]

我们把该式对应像素点的系数写成矩阵形式:

010151010

这个算子的作用是提高图像对比度,如果把该算子换成Laplace算子

010141010
就成了边缘检测。

卷积操作API

CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
                            InputArray kernel, Point anchor = Point(-1,-1),
                            double delta = 0, int borderType = BORDER_DEFAULT );

用法:

//用opencv的API  filter2D
    Mat kernel = (Mat_<char>(3, 3) << 0, 1, 0, 1, -4, 1, 0, 1, 0);

    filter2D(src, dst, -1, kernel);//此处-1为万能参数,也可以用src.depth()来代替-1

All demo:

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char ** argv)
{
    //读入图像
    Mat src, dst;
    src = imread("F:/Opencv/myimage/51CTO/4.jpg");
    //判断图像是否读取错误
    if (!src.data)
    {
        cout << "can not open the image ..." << endl;
        return -1;
    }
    //初始化结果图像
    dst = Mat::zeros(src.size(), src.type());
    double t = getTickCount();
    //掩膜操作
    //获取图像的Size与channel
    int cols = src.cols * src.channels();
    int offsetx = src.channels();
    int rows = src.rows;

    for (int row = 1; row < rows - 1; row++)
    {
        //等到行和列的地址
        const uchar * previous = src.ptr<uchar>(row - 1);
        const uchar * carrent = src.ptr<uchar>(row);
        const uchar * next = src.ptr<uchar>(row + 1);
        uchar * output = dst.ptr<uchar>(row);

        for (int col = offsetx; col < cols; col++)
        {
            //掩膜处理
            output[col] = saturate_cast<uchar>(carrent[col] * 5 - carrent[col - offsetx] - carrent[col + offsetx] - previous[col] - next[col]);
        }
    }
    cout << "myself function cost time:" << (getTickCount() - t) / getTickFrequency() << endl;
    //display all image
    namedWindow("Myself function", CV_WINDOW_AUTOSIZE);
    imshow("Myself function", dst);

    namedWindow("source image", CV_WINDOW_AUTOSIZE);
    imshow("source image", src);

    t = getTickCount();

    //用opencv的API  filter2D
    Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);

    filter2D(src, dst, -1, kernel);//此处-1为万能参数,也可以用src.depth()来代替-1

    namedWindow("OpenCV API", CV_WINDOW_AUTOSIZE);
    imshow("OpenCV API", dst);

    cout << "OpenCV API: " << (getTickCount() - t) / getTickFrequency() << endl;

    waitKey(0);

    return 0;

}

ps:
本例中还有一个实用的函数
就是计算代码运行时间
传送门

<think>好的,我现在要帮用户解决在C++中使用OpenCV设置掩膜矩阵的问题。用户可能已经看过一些教程,但需要更具体的指导和示例代码。首先,我需要回忆OpenCV中关于矩阵掩膜操作的相关知识,确保信息的准确性。 矩阵掩膜操作主要涉及使用卷积核(也称为掩膜)对图像进行滤波处理。常见的操作包括锐化、模糊和边缘检测。用户需要知道如何创建掩膜矩阵,并将其应用到图像上。根据引用[1]和[2],关键函数是filter2D,所以必须正确使用这个函数。 首先,我需要确定步骤的清晰性。应该包括读取图像、创建掩膜矩阵、应用filter2D函数,以及显示结果。此外,示例代码需要完整且可运行,所以需要包含必要的头文件和命名空间。 接着,要确保掩膜矩阵的正确性。比如,锐化掩膜通常是一个3x3的矩阵,中心较大,周围为负,这样能增强边缘。代码中需要展示如何用Mat::ones创建矩阵,然后调整数。可能还需要归一化处理,但根据情况而定。 用户可能对深拷贝和浅拷贝有疑问,但根据问题描述,他们主要关注掩膜设置,所以暂时可以不深入讨论Mat对象的使用细节,但引用[2]提到clone()和copyTo(),可能在相关问题中提到。 然后,检查是否需要处理图像类型转换,比如将图像转换为CV_32F类型,但通常filter2D会自动处理。不过,在应用后可能需要转换回8位无符号整数,尤其是当结果有负时,避免显示问题。例如,使用convertTo函数并取绝对。 可能的问题点包括:掩膜矩阵的数设置是否正确,是否进行了归一化,以及如何处理输出图像的类型。需要确保代码示例中这些步骤正确,避免用户运行时出错。 最后,生成的相关问题要围绕用户可能进一步的需求,比如不同掩膜类型、自定义核、归一化的影响,以及性能优化等。这些问题可以帮助用户扩展知识,并参考提供的引用资料。 总结步骤: 1. 引入头文件和命名空间。 2. 读取图像,检查是否成功。 3. 创建掩膜矩阵,例如锐化核。 4. 应用filter2D函数进行处理。 5. 处理输出类型(如转换到CV_8U)。 6. 显示和保存结果。 7. 添加相关问题,引导深入学习。 需要验证示例代码的正确性,比如是否正确应用了掩膜,是否有内存泄漏,以及是否处理了可能的异常情况,如图像读取失败。另外,代码注释要清晰,解释每一步的作用,方便用户理解。</think>### 如何在C++中使用OpenCV设置掩膜矩阵 #### 1. 基本概念 矩阵掩膜(卷积核)是图像处理中用于实现滤波操作矩阵,通过将核与图像进行卷积运算,可实现锐化、模糊、边缘检测等效果。OpenCV 的 `filter2D` 函数是核心工具,其原理为加权求和像素邻域[^1][^2]。 #### 2. 实现步骤 **步骤1:读取图像** ```cpp #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat src = imread("input.jpg", IMREAD_COLOR); // 读取图像 if (src.empty()) { printf("图像读取失败"); return -1; } ``` **步骤2:定义掩膜矩阵** 以下示例定义一个锐化掩膜: $$K = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$ ```cpp Mat kernel = (Mat_<float>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0); // 3x3锐化核 ``` **步骤3:应用掩膜操作** ```cpp Mat dst; filter2D(src, dst, -1, kernel); // -1表示输出图像深度与输入相同 ``` **步骤4:处理输出结果** ```cpp // 将浮点结果转换为8位无符号整型(可选) dst.convertTo(dst, CV_8U); imshow("原图", src); imshow("锐化结果", dst); waitKey(0); imwrite("output.jpg", dst); return 0; } ``` #### 3. 关键参数说明 - `filter2D` 参数: - `ddepth`:输出图像深度,设为 `-1` 表示与输入一致 - `anchor`:核锚点位置(默认中心点 `(-1,-1)`) - `delta`:输出像素的附加偏移量 - 掩膜归一化:若核元素和为1(如均模糊),需添加 `kernel /= sum(kernel)[i]`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值