施努卡(SCHNOKA)成立于2010年,先后在上海,苏州及武汉建立了分公司。国家高新技术企业,致力于打造面向智能产线与智慧工厂最强控制大脑的高科技公司。公司围绕感知&识别核心技术构建智能装备,基于机器人视觉算法与单机器人工作站、多机器人群体共融、行业定制化应用。打造产品体系,面向智能生产线、智慧物流等场景实现软件定义智能。
SCHNOKA (施努卡)在3D机器视觉算法、机器人柔性控制、手眼协同融合、产线级机器人协同、工厂级智能规划与调度等方面均由领先技术和行业落地应用,在汽车工业智能分拣产线、大尺寸高精度三维量测、大场景物流搬运机器人智能分拣等方面有丰富的项目经验。
SCHNOKA(施努卡)的多个核心产品汽车工业标杆生产线、锂电新能源灯塔工厂、工程机械智慧工厂、智慧物流等多个领域多个场景应用落地。已经和百亚国际、稳健医疗、米老头集团、维达纸业、一汽大众、上汽大众、沃尔沃汽车、奇瑞捷豹路虎、吉利汽车、长安汽车、上汽通用五菱、长城蜂巢新能源、三一重工、中航工业沈飞、中隧集团、西门子高压开关、中国中车、ABB(中国)等国内外知名企业建立了良好的伙伴合作关系,获得头部客户广泛好评。
作为生产制造过程中必不可少的一步,表面缺陷检测广泛应用于各工业领域,包括3C、半导体及电子、汽车、化工、医药、轻工、军工等行业,催生了众多上下游企业。
表面缺陷检测大致经历了三个阶段,分别是人工目视法检测法、机械装置接触检测法以及机器视觉检测法。
第一种是人工目视法检测法。制造企业招聘大量的质检工人,采取流水线的形式进行检测。然而,随着人口红利的消失,以及工作枯燥、自由度低、薪酬较少,愿意从事质检的越来越少,用工难问题愈发凸显,这种方法不仅成本高,而且在对微小缺陷进行判别时,难以达到所需要的精度和速度,人工检测法还存在劳动强度大、检测标准一致性差等缺点。
第二种是机械装置接触检测法。这种方法虽然在质量上能满足生产的需要,但存在检测设备价格高、灵活性差、速度慢等缺点。
第三种是机器视觉检测法。为了在不断变化和竞争愈发激烈的市场中占据优势,企业既要不断提高产品质量标准以满足客户需求,又要不断提升生产线的效率以适应市场的快节奏。采用自动化、智能化的表面缺陷检测方法是兼顾质量与效率的重要手段。