目录
1.简介
熵的概念最早起源于,热力学中表征物质状态的参量之一,其物理意义是体系混乱程度的度量,即用于度量一个热力学系统的无序程度。
在信息论里面,熵是对信息不确定性的测量。香农(C. E. Shannon)信息论应用概率来描述不确定性。信息是用不确定性的量度定义的。一个消息的可能性愈小,其信息愈多;而消息的可能性愈大,则其信息愈少。事件出现的概率小,不确定性越多,信息量就大,反之则少。
- 信息量是指信息多少的量度。1928年,R.V.L.哈特莱首先提出信息定量化的初步设想,他将消息数的对数定义为信息量。若信源有m种消息,且每个消息是以相等可能产生的,则该信源的信息量可表示为I=logm
- 信息量与概率呈单调递减关系,概率越小,信息量越大。
- 信息量的数学定义如下式所示,可用随机变量的概率来表示,U表示发送的信息,则表示发送信息U中的一种类型:
信息熵表示信息量的数学期望,是信源发出信息前的平均不确定性,也称为先验熵。
熵越高,信息的不确定性越大,预测的难度越大,则能传输越多的信息;
熵越低,信息的不确定性越小,即信息很容易预测到,则意味着传输的信息越少。
如:文件压缩,压缩掉冗余内容
如果压缩是无损的,即通过解压缩可以百分之百地恢复初始的消息内容,那么压缩后的消息携带的信息和未压缩的原始消息是一样的多。而压缩后的消息可以通过较少的比特传递,因此压缩消息的每个比特能携带更多的信息,也就是说压缩信息的熵更加高。
- 未压缩信息:包含很多很容易预测到的对信息的传递无关紧要的内容
- 压缩信息:压缩信息的熵更高,意味着比较难于预测压缩消息携带的信息,原因在于压缩消息里面没有冗余,即每个比特的消息携带了一个比特的信息。香农的信源编码定理揭示了,任何无损压缩技术不可能让一比特的消息携带超过一比特的信息。消息的熵乘以消息的长度决定了消息可以携带多少信息。
2.定义
2.1 熵/边缘熵/先验熵
在信息论与概率统计中,熵是表示随机变量不确定性的度量,不确定性越高,熵值越大。
设 X 是离散型随机变量(有限个),其概率分布为:
则随机变量 X 的熵的定义为:
注意:
- 熵与X变量的取值无关,只依赖于X的分布, 可以看作 的函数;
- 熵可以看作 的数学期望,负号的作用是确保结果为正;
- log 一般以2为底,单位是比特(bit),或者以为底,单位奈特(nat);
信息熵的取值范围:
n:X的取值类别数
当 时,:随机变量取值很确定,即完全没有发送信息的不确定性
当 时,:此时模棱两可,熵取值最大。也就是,当随机变量 X 为均匀分布时,信息熵取值最大。
拿二分类来说,当,:
2.2 条件熵
(1)后验熵
信息熵H(Y) 表示在发出信息之前Y存在的不确定性,在接收到信息之后,信息Y的不确定性会发生改变,即后验熵,它是接收到一定的信息后,对信息Y进行的后验判断,定义如下:
(2)条件熵:后验熵的期望
考虑所有信息X时,得到后验熵的期望,即条件熵。条件熵 H(Y|X) 表示在已知随机变量X的条件下,随机变量Y的不确定性,定义为X给定条件下Y的条件概率分布的熵对X的数学期望。
H(Y|X) 表示在接收到X后对信息Y仍存在的平均不确定性,通常由随机干扰引起。
2.3 联合熵
对于多维随机变量(X,Y),其联合分布为
联合熵的定义为:
基于边缘熵的定义,很容易得到两个随机变量的联合熵。
最后,将边缘熵、条件熵、联合熵联系起来:
由此可见,H(X,Y) 的不确定性最大,当它减去了 H(X),得到在X确定的情况下Y的不确定性。
2.4 互信息
互信息 的含义:给定条件Y后,X的信息的不确定性减少的程度。
如果X和Y相互独立,则,即它们的互信息为0。
3.信息增益
当熵和条件熵的概率是根据训练集数据估计得到时,成为“经验熵”和“经验条件熵”。
信息增益:表示得知特征X的信息而使得类Y的信息的不确定性减少的程度,熵与条件熵的差,即互信息。
对于机器学习分类,熵是对不确定性的测量,也可以说是度量样本集合纯度的一种指标,也就是说样本类数越少(不确定性越小),样本纯度越高,信息熵就越小。
决策树中,最重要的一步就是划分属性,信息增益是划分属性的一种方式。直观上讲:
= 划分之前数据集的信息熵 - 特征A划分之后的信息熵
信息增益等价于训练数据集中类与特征的互信息,表示由于特征A而使得对数据集D进行分类的不确定性减少的程度。
对于数据集D而言,信息增益依赖于特征,不同的特征往往具有不同的信息增益,信息增益大的特征具有更强的分类能力。
因此,根据信息增益准则的特征选择方法是:对训练集D,计算其每个特征的信息增益,比较其大小,选择信息增益最大的特征。
参考:
https://zhuanlan.zhihu.com/p/112272582