时间序列
满腹的小不甘
这个作者很懒,什么都没留下…
展开
-
时间序列预测之三:谱分析(一)
关于谱分析的内容,一起参考我的另一篇文章:时间序列预测分析方法(二):频谱分析1. 简介1.1 什么是谱分析? 谱分析,是将时间序列用正弦和余弦的线性组合进行建模的思想,提供了非常容易地发现“隐藏”周期性的工具。 历史上,谱分析是从寻找时间序列数据里“隐藏的周期性”开始的。时间序列的相关性质,常称作时间域上的分析。在对时间序列的频率性质进行分析时,我们称为在...原创 2019-06-12 10:05:21 · 20905 阅读 · 3 评论 -
时间序列预测之三:频谱分析(二)
关于谱分析的内容,参考我的另一篇文章:时间序列预测:谱分析1. 简介 由傅里叶理论可知,时域中的任何信号都可以由一个或多个具有适当频率、幅度和相位的正弦波叠加而成。也就是说,任何时域信号都可以变换成相应的频域信号,通过频域测量可以得到信号在某个特定频率上的能量值。频谱分析就是在频域上分析时间序列的方法,它使用傅里叶分析方法,将时域信号转换到频域,并从频域中找出信号频谱的变化规...原创 2019-06-19 15:30:11 · 14840 阅读 · 1 评论 -
时间序列预测之二:灰色模型
目录1、简介(1)常见系统分类(2)灰色预测法2. 灰色生成数列(1)累加生成(AGO)(2)累减生成(IAGO)(3)加权邻值生成3. 灰色模型GM(1,1)4. 检验预测值(1)残差检验:计算相对残差(2)级比偏差值检验:计算1、简介 灰色模型(Gray Model),常用来对数据进行预测。灰色预测是针对灰色系统所做的预测。...原创 2019-06-06 17:16:27 · 20812 阅读 · 1 评论 -
时间序列预测之一:指数平滑法(二)R语言——代码实现
参考:https://www.cnblogs.com/fengzzi/p/10044426.html指数模型是用来预测时序未来值的最常用模型。这类模型相对比较简单,但是实践证明它们的短期预测能力较好。不同指数模型建模时选用的因子可能不同。比如单指数模型(simple/single exponential model)拟合的是只有常数水平项和时间点i处随机项的时间序列,这时认为时间序列不...转载 2019-06-06 10:34:31 · 10879 阅读 · 1 评论 -
时间序列预测之一:指数平滑法(一)理论
目录1. 基础知识2. 简单滑动平均(rolling mean)3. 指数平均(EXPMA)3.1 一阶指数平滑3.2 二次指数平滑3.3 三次指数平滑预测4. 二次指数平滑法实例分析 指数平滑法,用于中短期经济发展趋势预测。全期平均法:简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法:移动平均法则不考虑较远期...原创 2019-06-05 17:30:17 · 26616 阅读 · 2 评论 -
混沌模型时间序列预测
一、混沌理论混沌现象是介于确定和随机之间的一种不规则运动,是一种由确定的非线性动力学系统生成的复杂行为,广泛存在于自然系统和社会系统中。混沌是确定性系统中由于随机性行为而产生的一种外在的、复杂的、貌似无规则的运动。对于确定性的非线性系统出现的具有内在随机性的解,称为混沌解。混沌系统分为两类:(1)保守系统中不可积系统的混沌,如庞加莱证明的太阳系稳定性问题;(2)耗散系统中的混沌,如Lor...原创 2020-02-01 21:57:44 · 13946 阅读 · 1 评论 -
R语言与数据分析:时间序列简单介绍
1.https://blog.csdn.net/howardge/article/details/41979119接下来我们来分解时间序列,时间序列分为:非季节性数据和季节性数据一个非季节性时间序列:包含一个趋势部分和一个不规则部分。分解时间序列即为试图把时间序列拆分成这些成分,也就是说,需要估计趋势的和不规则的这两个部分。一个季节性时间序列:包含一个趋势部分,一个季节性部分和一个...转载 2020-01-03 10:12:13 · 1337 阅读 · 0 评论 -
卡尔曼滤波器算法(Kalman Filter)—— 数学推导,图文并茂
(1)HMM:隐变量是离散的(2)Kalman Filter:又叫 Linear Dynamic Model 或 Linear Gaussian Model 隐变量和观测变量都是连续的,都是服从高斯分布的 (3)Particle Filter:Non-Linear、Non-Guaaian1.Kalman Filter这里:Z为状态,相当...原创 2019-07-10 14:24:52 · 1655 阅读 · 0 评论 -
时间序列预测分析方法(一):相关分析
针对特定的预测问题,只是拥有数据还不够,想要从纷繁复杂的数据关系中挖掘出可用于预测的规律或模式,还得运用恰当的分析方法。比如聚类分析,恰当地选择聚类算法,可以按维度将数据适当地分群,根据各类的特征制订营销计划或决策,抑或是根据各类不冋规律建立起更有针对性的预测模型;还有常用的关联分析,可以从事物的历史数据中挖掘出变化规律有指导性地对未来进行预测,如此等等。本内容将分别介绍常用的分析...原创 2019-06-18 14:35:11 · 31995 阅读 · 3 评论 -
模型参数优化(四):交叉验证、网格搜索
1.交叉验证1.1 基本概念 交叉验证的基本思想是将数据集分割成N份,依次使用其中1份作为测试集,其他N1份整合到一起作为训练集,将训练好的模型用于测试集上,以得到模型好坏的判断或估计值,可以得到N个这样的值。交叉验证通常用于估计模型的误差,这里将N个对应的误差求平均作为对模型误差的估计。也可以根据这N个值,选岀拟合效果最好的模型,对应模型的参数也被认为是最优或接近最优的,因此...原创 2019-06-25 17:37:40 · 3553 阅读 · 0 评论 -
模型参数优化(三):模拟退火
1. 基本概念 补充。。。2. 实现步骤3. 代码实现原创 2019-06-25 17:30:03 · 1777 阅读 · 0 评论 -
模型参数优化(二):粒子群优化
1. 基本概念 粒子群优化,又称微粒群算法,来源于对—个简化社会模型的模拟,主要用于求解优化问题。 粒子群优化算法是 Kennedy和 Eberhart受人工生命硏究结果的启发,通过模拟鸟群觅食过程中的迁徙和群聚行为而提出的一种基于群体智能的全局随机搜索算法。与遗传算法一样,它也是基于“种群”和“进化”的概念,通过个体间的协作与竞争,实现复杂空间最优解的搜索。但是,...原创 2019-06-25 17:27:45 · 3313 阅读 · 0 评论 -
模型参数优化(一):遗传算法
参数是指算法中的未知数,有的需要人为指定,比如神经网络算法中的学习效率,有的是从数据中拟合而来,比如线性回归中的系数,如此等等。在使用选定算法进行建模时,设定或得到的参数很可能不是最优或接近最优的,这时需要对参数进行优化以得到更优的预测模型。常用的参数优化方法主要包括交叉验证、网格搜索、遗传算法、粒子群优化、模拟退火,本节介绍遗传算法。 遗传算法实质:选定一批最佳参数,...原创 2019-06-25 15:57:39 · 27208 阅读 · 1 评论 -
预测方法论:预测流程
编辑中。。。 预测是个复杂的过程,需要不同角色的人参与,因此,制订用于指导预测工作开展的流程至关重要。预测基本流程参照了 CRISP-DM标准过程及数据分析的常见步骤,按照笔者从事预测工作多年的经验整合而成,详见下图。从确定预测主题开始,依次进行收集数据、选择方法分析规律、建立模型、评估效果直到发布模型。 需要注意的是选择方法和分析规律之间是可逆箭头,如果没找到...原创 2019-06-17 16:52:33 · 1658 阅读 · 0 评论 -
R语言:预测算法常用包总结
R语言用于预测的算法常见包总结如下:原创 2019-06-17 16:34:16 · 2801 阅读 · 0 评论 -
TCN-时间卷积网络
目录一、引言二、时序卷积神经网络2.1 因果卷积(Causal Convolution)2.2 膨胀卷积(Dilated Convolution)2.3 残差链接(Residual Connections)三、讨论和总结1. TCN的优点2. TCN的缺点参考论文:An Empirical Evaluation of Generic Convolutional ...转载 2019-06-03 14:42:01 · 85957 阅读 · 14 评论 -
R语言:时间序列常用函数
时序分析会用到的函数函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() stats 返回时间序列的结束时间 frequency() stats 返回时间序列中时间点的个数 win...原创 2019-06-06 10:36:26 · 6308 阅读 · 0 评论 -
R语言:ts() 时间序列的建立
ts() 函数: 通过一向量或者矩阵创建一个一元的或多元的时间序列(time series),为ts型对象。调用格式: ts(data = NA, start = 1, end = numeric(0), frequency = 1, deltat = 1, ts.eps = getOption("ts.eps"), class, names)说明:...原创 2019-06-05 15:16:09 · 54493 阅读 · 6 评论