混沌模型时间序列预测

一、混沌理论

 混沌现象是介于确定和随机之间的一种不规则运动,是一种由确定的非线性动力学系统生成的复杂行为,广泛存在于自然系统和社会系统中。混沌是确定性系统中由于随机性行为而产生的一种外在的、复杂的、貌似无规则的运动。对于确定性的非线性系统出现的具有内在随机性的解,称为混沌解。

混沌系统分为两类:(1)保守系统中不可积系统的混沌,如庞加莱证明的太阳系稳定性问题;(2)耗散系统中的混沌,如Lorenz系统。对于物理系统,从能量观点可以分别保守系统和耗散系统。保守系统,可以分为可积的和不可积的系统,不可积的系统意味着混沌系统;耗散结构是由极限环描述的周期运动,两个或两个以上周期运动的耦合会产生混沌运动。

混沌时间序列预测的物理基础:(1)一方面,系统的蝴蝶效应,即某些复杂的非线性系统对复杂的初始条件具有很强的敏感性,即使系统初始条件细微差异,系统演化也可能导致显著差异,在实际中很难测量初始条件,因此对这类系统进行长期预测是不可能的;(2)另一方面,混沌是由确定系统的内在特性引起的,在表面的随机性中蕴藏着系统的内在秩序确定性,而非完全随机的,因此其短期预测具有可行性

  • 混沌现象所固有的确定性,表明许多随机现象实际上是可以预测的;

  • 混沌现象所固有的对初值的敏感性,又意味着预测能力受到新的根本性限制。

    因此,混沌现象是短期可以预测,而长期不能预测。

混沌时间序列预测,是一种新型的非线性系统预测理论,研究如何由时间序列通过相空间重构,从另一个维度和视角来辨识系统,挖掘系统中蕴藏的规律,并预测系统的未来走势,而忽略因变量背后众多影响因素和复杂的影响机理,省却了大量繁琐的工作,非常适合于那些总体呈现确定性,但又具有某种程度随机性复杂系统

混沌时间序列预测的基本思想:构造一个非线性映射来近似地还原原系统,这一非线性映射即为要建立的预测模型。

混沌时间序列预测的优点:(1)不必事先建立一个主观模型,再通过对这个模型的微调来拟合原系统,而是直接根据序列本身的客观规律进行预测,这样可以最大限度地避免人为主观性,提高预测的精度和可信度;(2)混沌方法有更广阔的适用范围,即系统适应性好,而不像传统预测方法仅仅适用于某一类具有特定特征的系统。

时间序列预测模型的建立主要基于两类思想:(1)一类思想基于多变量回归,即预测对象的未来行为取决于其他主导对象的当前或过去的行为,也就是说取决于另一个或多个时间序列。这些起主导作用的时间序列与被预测的时间序列存在共振或同步,同时也要满足领先于被预测的时间序列。(2)另一类思想基于单变量自回归,即预测对象的未来行为主要由其历史行为决定。

吸引子不变量:关联维、K熵、Lyapunov指数

 

 

内容推荐 预测是作决策、规划之前的必不可少的重要环节 ,是科学决 策、规划的重要前提。混沌时间序列预测预测领域 内的一个重 要研究方向。基于小波和人工神经网络的混沌时间序 列预测研究 是近几年来的研究热点,受到了特别的重视。小波神 经网络是结 合小波变换理论与人工神经网络的思想而构造的一种 新的神经网 络模型,它结合了小波变换良好的时频局域化性质及 神经网络的 自学习功能,因而具有较强的逼近能力和容错能力。 自从小波神 经网络被提出以后,它在非线性函数或信号逼近、信 号表示和分 类、系统辨识和动态建模、非平稳时间序列预测与分 析等许多领域 中被较为广泛地应用。尽管如此,将小波和人工神经 网络理论应 用到预测还有许多不尽如人意和有待进一步研究的地 方,还有很 大的研究余地。姜爱萍编著的《混沌时间序列的小波 神经网络预测方法及其优化研究》对此进行了深入分 析和研究,主要研究了小 波神经网络的构造、学习和优化以及小波神经网络在 混沌时间序 列预测中的应用,构建了适应于混沌时间序列短期预 测的模型,并 将其应用于中国股票价格预测。《混沌时间序列的小 波神经网络预测方法及其优化研究》主要研究成果与 创新点分述 如下: (1)用混沌理论及其分析方法对非线性时间序 列进行了研 究,为混沌时间序列的短期预测性提供了理论基础。 并以上证综 合指数为例,通过对其进行相空间重构,反映了股指 序列具有吸引 子结构。同时,对股指序列进行了确定性检验,求取 最大李雅普诺 夫指数。根据最大李雅普诺夫指数,确定了上证综合 指数序列具 有混沌特性,这为探求股指变化规律和正确建立其短 期预测模型 奠定了基础。 (2)从小波神经网络构造理论出发,详细介绍 了小波神经网 络的数学基础和性质,对目前广泛应用的四种小波神 经网络的结 构进行了深入分析,根据网络算法、逼近细节能力、 包含频域信息 广等方面因素,提出多分辨小波神经网络更适合混沌 时间序列预 测,因为多分辨小波神经网络既能逼近混沌时间序列 的整体变化 趋势,又能捕捉细节的变化。 (3)利用相空间重构技术,把消噪后得到的状 态矢量作为多 分辨小波神经网络的多维输入,构建了多维多分辨小 波神经网络 预测模型,将其应用于混沌时间序列预测,并给出了 实现方法。针 对多分辨小波神经网络提出了BP和多分辨率学习组合 算法,解 决了传统学习算法网络隐层节点数难以确定的问题, 克服了BP 网络单尺度学习算法很难学习复杂的时间序列的不足 。以上证综 合指数为例,分别采用具有相同结构的MRA—WNN和 RBF_ VJNN预测模型对股价时序进行预测,仿真结果表明, 多分辨小波 神经网络具有较高的预测精度。 (4)给出了小波神经网络的优化的两类非单调 的方法。一类 是非单调的滤子方法,并且证明了该算法是全局收敛 到一阶临界 点。这个算法不同于传统的滤子信赖域方法,因为它 使用了试探 步的切向和法向的分解;也不同于Gould提出的非单 调方法,因为 本书提出的非单调性更为松弛。这使得在不引入二阶 校正步的情 况下改进了滤子方法。同时也不再定义支配区域的边 界,而直接 使用面积,这样也相应简化了算法。另一类是非单调 的无罚函数 方法,该方法利用非单调线搜索和对于约束违反度函 数的可行性 恢复阶段来达到目标函数和约束违反度函数之间的平 衡,而非单 调的方法在M一1时是等价于单调方法的,非单调方法 从M步看 来仍然是单调的。当然,在这种方法中,也可以采用 试探步分解的 技术,然后利用滤子来做接受性的检验。进一步地, 我们还可以将 非单调的滤子方法推广到一般的约束最小化问题之中 ,数值结果 表明这种方法也是可执行的且是有效的,并用此两种 方法作为训 练小波神经网络的优化新算法。 (5)提出将无罚函数方法与非线性互补问题相 结合用于小波 神经网络的优化,将互补问题转化为约束优化问题, 应用约束优化 问题的策略和技巧对其求解,融入无罚函数的概念, 并得到了算法 的收敛性。同时,其数值结果也表明这类算法和同类 的其他方法 比起来更为灵活,且具有更好的数值效果。 (6)提出基于修正的SQP滤子方法的小波神经网 络的优化, 修正了序列二次规划子问题,使得二次规划子问题在 每个迭代处 总是可解的,同时不用线搜索,提出了修正的滤子方 法。另外,引 入积极集策略,减小运算量。当第一次得到的搜索方 向不被滤子 接受时,不是直接舍弃它,而是转而以这个方向为基 础,构造另一 个可行下降的搜索方向。并在此基础上加入了线搜索 ,得到了带 线搜索的滤子方法,其数值结果也说明基于修正的 SQP滤子方法 的小波神经网络的优化是有效的。 (7)提出基于新的无罚函数方法的小波神经网 络的优化,应 用NCP函数把约束优化问题转化为非线性非光滑方程 的求解问 题。运用分裂的思想将其分裂为光滑函数和非光滑函 数之和, 同时将NCP函数的信息融入了滤子对中,改造了原有 的滤子对 的形式,最终得到了算法的全局收敛性和局部超线性 收敛性。 另外,为了求解大规模问题,结合积极集策略,提出 了积极集滤 子方法,得到了非单调的滤子方法简化小波神经网络 优化运算 的目的。 (8)用全局优化方法——填充函数法研究了小 波神经网络 的优化方法,构造了一种新的易于计算的单参数的填 充函数,不 仅证明了新构造的函数具有填充函数的性质,还把填 充函数和 BP算法相结合,提出一种训练小波神经网络的混合型 全局优化 新算法。 (9)在退火遗传算法的基础上提出一个新的自 适应退火策 略,将自适应退火策略用于选择概率的计算以增强算 法的收敛性, 在交叉和变异概率的选取上也进行了自适应处理,以 进一步改善 算法的稳定性和收敛性,并将此自适应退火遗传算法 应用于小波 神经网络权值的优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

满腹的小不甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值