机器学习经典必读书,李航《统计学习方法》出视频课了!

众所周知,AI行业里的技术大牛,微软亚洲研究院、华为诺亚方舟实验室等知名机构有着丰富的从业经历的李航博士,又出了“蓝宝书”《统计学习方法》第二版!

很多同学都在举双手跟风说要买第二版新书,问一个扎心的问题:你连第一版都没看完,第二版加了100多页,你能看完吗?

据了解,《统计学习方法》第一版主要是介绍了监督学习的算法与模型。 涵盖了目前机器学习应用中90%以上的算法,而第二版主要增加的是无监督学习,这些内容虽说是机器学习的重难点,但是在未来的3-4年,才可能会有所涉及。

与其去盲目的高价购买第二版书籍,不如先扎实的学好第一版算法的内容。

统计学习在第一版就已经涵盖了机器学习领域内大家都应该掌握的算法,但是对于具体的很多概念都没有具体描述,只是提纲挈领地整理出来,因此对于很多学这本书的学生来说,还是有一定的难度。

所以,为了打好机器学习基础的学员,遇到的这些困难,我们精心为广大学员准备了一场集算法推导视频+作业讲解视频+教学指导为一体的李航《统计学习方法》训练营!

号主zenRRan推荐语  ——这个我目前见过最良心、价格亲民、性价比最高的课程了,我也参加了之前的两个课程,效果真的很棒!这次做了改进,出了视频学习课程,只能竖起大拇指!而且这次我也买了这个课程,真心推荐给我公众号粉丝们!真心不错!我们一起学习!加油加油!

李航《统计学习方法》训练营

算法推导视频详解

有很多同学表示,因为公式推导缺少很多细节,自主学习需要在网上查阅大量的资料,耗费大量学习时间,因此,我们加入31节算法公式的推导详解视频细化到每一步,让你彻底搞懂机器学习内在的每一个原理。

代码编程作业视频讲解

我们还对作业进行了详细的视频讲解,更通俗易懂的掌握知识

三维度答疑

1、导师接受1对1提问,12小时之内保证解决问题

2、每月统一收集问题直播答疑,系统讲解重难点

3、微信群助教及时互动,群友互答

合理安排学习任务

//

教学大纲

//

Week1  

视频教学:

第1章统计学习方法概论

第2章感知机

学习第3章k近邻

作业:   

推导正态分布均值的极大似然估计和贝叶斯估计。

思考感知机模型假设空间是什么?模型复杂度体现在哪里?

思考k近邻算法的模型复杂度体现在哪里?什么情况下会造成过拟合?

作业视频讲解:

极大似然估计作业

贝叶斯估计作业

Week2

视频教学:

第4章朴素贝叶斯法

第5章决策树

作业:

自编程实现朴素贝叶斯算法,对训练数据进行分类

证明CART剪枝算法中,当α确定时,存在唯一的最小子树Ta使损失函数Cα(T)最小

作业视频讲解:

感知机自编程作业

感知机sklearn作业

knn-sklearn作业

Week3

第6章逻辑斯谛回归与最大熵模型

第7章支持向量机

作业:

用python 自编程实现逻辑斯缔回归模型,并对点(1,2,-2)T进行分类。

尝试改变参数,选择不同算法,如梯度下降法和拟牛顿法

完成习题,求最大间隔分离超平面和分类决策函数

作业视频讲解:

DecisionTree作业

Week4

第8章提升方法

第9章EM算法及推广

作业:

调用sklearn.ensemble.AdaBoostClassifier对例题8.1进行实现

试用自编程的方式求解习题9.3,打卡代码运行结果的截图

作业视频讲解:

LogisticRegression作业

Week5

第10章隐马尔科夫模型

第11章条件随机场

作业:

尝试用自编程的方式完成题目,打卡代码运行结果的截图。

作业视频讲解:

支持向量机(SVM)作业

你还能获得什么?

1、赠送价值1198元为期一年1对1咨询服务,11位重量级人工智能大咖坐镇,全方位解决你的学习困惑

2、每周五热门话题讨论,400+学员的集体头脑风暴,资源、干货、观点一起碰撞

4、超过15家知名互联网企业的内推合作

5、get AI行业人脉资源,带学导师,班级同学,同学校友等等等,之后,大家可能都是AI圈的同事哦!

学员班级全家福

学AI,顶级书本+权威导师,你就相当于成功了一半,而我们有广受学员好评的导师!

带学导师

Eddy

现任香港某大学数学系博士

毕业于国内双一流重点大学硕士学位

曾任国内知名电商平台大数据算法工程师

曾获数学建模竞赛,国家二等奖

-长按以下二维码速速报名-

报名时间:2019年5月9日—2019年5月26日(过时无法参与)

学习周期:2019年5月20日 —2019年6月23日 

不仅如此,为了保证你的学习问题得到最快速的解决,针对每位学生,我们都提供了全方位的答疑,随时为你解决学习和作业中的任何问题

我们这样为你批改作业

1:对于优秀作业我们将置顶,助教将进行点评

2:每月作业直播讲解,查漏补缺,真正吃透,融会贯通

睁开眼,阳光和你都在~

可上下滑动,查看部分学员作业反馈

学完有效果吗?事实证明,统计学是所有人工智能算法课的基础,也是最重要的一环

如果你曾经参加过我们的训练营,你知道每一位学生对我们都是真实的反馈。

学员给我们的好评

我们的模式在往期训练营里做到了零吐槽!零差评!

而我们,还在不断的更新迭代

睁开眼,阳光和你都在~

可上下滑动,查看部分学员评价

学习氛围

在我们的学习群里,你不仅能接触到更多严格要求自己的人,还能让你的学习效果在深度交流中实现最大化!

如果你还在犹豫,不如看看有多少位学生已经加入学习了

报名情况

1、超过1.9w+学员已加入训练营

2、累积打卡总195683+次

为了鼓励学生坚持学习,按要求完成作业,我们将赠送你如下福利!

奖金池返现,截止目前我们已累积返现8w+元,还在不断累积

训练营采取的积分机制,打卡、点评、点赞都会有得到相应的积分,凭积分就可以换取相应奖品!

此外,积极参加社群活动,还有机会获得【深度之眼】的精美周边产品。

现在加入,仅需98元

   过时将无法参与!!!

报名时间:2019年5月9日—2019年5月26日

学习周期:2019年5月20日 —2019年6月23日 

如果你就想学第二版内容,怎么办?

没关系,我们后续会直接迭代推出

凡之前参与的同学,均可免费复训

与其等书更新,不如先学起来

添加班主任送你免费《Python 基础训练营》

备注:如有任何问题,也请添加班主任微信咨询

开启你的升级之旅

除此以外,我们还有会员专享的十七大训练营,通过系统的课程体系让你从入门进阶到企业实战

购买VIP需添加班主任微信拉群哦!

支持花呗/信用卡分期,我们帮你付全部利息!

订阅须知

Q、课程资料在哪里看?

A、所有的课程资料均会在训练营上传,课程视频支持PC端倍速播放。

Q、报名后可以退款吗?

A、本服务为虚拟内容产品,一经购买,概不退款,敬请谅解。

Q、可以开具发票吗?

A、可以开具普通发票,请联系微信班主任填写需要的信息即可。

名企合作

讲师招募

“深度之眼”首创训练营模式,在不到一年时间已有近1万名付费学员,我们长期招募兼职讲师,以在线工作为主,分成收入佳。

只要您在一下方面有某一专长:

1、 精读过《深度学习》花书李航《统计学习方法》、《机器学习》西瓜书等AI类知名书籍,可以开设以此书籍为教材的带读班。

2、系统学过李宏毅的《机器学习》《深度学习》、李飞飞《计算机视觉课》或是国外名校的知名公开课,可以开设以此课程为教材的带学班。

3、 打过Kaggle、天池、AI challenger、科赛网、DC等竞赛,并取得过前5的成绩,可带竞赛班

4、如果你自己曾经读过AI类的经典或者前沿论文,并且对论文做过深入的分析和研究,可作为我们的paper精读班老师

5、如果你在企业里面,有参加过实际的企业项目,可以作为我们AI企业项目实战班

我们不需要你全能,只要你在某一个方面特别擅长,即可担任我们的带学导师。

欢迎大家扫客服微信联系我们!

同时,我们的两门精品课程也正在开班中,详情请点击原文链接了解哦!

美国圣母大学2017年新开程《给科学家和工程师的统计学习》Statistical Computing for Scientists and Engineers 涵盖了统计学习中的几乎所有重要知识,包括《概率与统计、信息论、多维高斯分布、最大后验估计、贝叶斯统计、指数族分布、贝叶斯线性回归、蒙特卡洛方法、重要性采样、吉布斯采样、状态空间模型、EM算法、主成分分析、连续隐变量模型、核方法与高斯过程等》,并提供视频,PPT,程作业及其参考答案与代码,还有大量参考学习资源,是不可多得的统计学习程。和李航统计学习方法配合学习效果更佳。 讲件和视频 1. 统计计算,概率与统计导论 2. 概率与统计导论(第一节延续) 3. 信息论,多维高斯分布,最大似然估计,罗宾斯 - 门罗算法 4. 基于罗宾斯 - 门罗的序列最大似然估计,条件与边缘高斯分布 5. 似然计算,最大后验估计,正则化最小二乘,线性高斯模型 6. 贝叶斯统计简介,指数族分布 7. 指数族分布和广义线性模型,多维高斯分布的贝叶斯推断 8. 先验与层次模型 9. 贝叶斯线性回归简介,模型比较与选型 10. 贝叶斯线性回归 11. 贝叶斯线性回归(续) 12. 贝叶斯回归和变量选择的实现 13. 蒙特卡洛方法简介,离散与连续分布采样 14. 逆采样,变换采样,接受-拒绝方法,分层/系统抽样 15. 重要性采样 16. 吉布斯采样 17. 马尔科夫蒙特卡洛MCMC算法 18. 状态空间模型与顺序重要性采样简介 19. 顺序重要性重采样 20. 顺序重要性重采样(续) 21. 序列蒙特卡洛与条件线性高斯模型 22. 逆跳跃马尔科夫链蒙特卡洛 23. 期望最大算法简介 24. 期望最大算法(续) 25. 主成分分析 26. 连续隐变量模型 27. 核方法与高斯过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值