作者:Carrie
GCN 的兴起为许多NLP问题的解决提供了新的思路。通过句法依赖树构建图结构,基于此通过GCN进行NLP问题的解决已经得到了广泛应用。那么除此之外,还有哪些方法可以用于在文本中建立图结构从而使用GCN呢?
小编整理了如下几篇,分别是通过TF-IDF, PMI、序列关系、词典 等信息进行构图的顶会论文,希望能够拓展对GCN的应用思路( ఠൠఠ )ノ
AAAI2019: Graph Convolutional Networks for Text Classification
论文地址: https://github.com/kuoluo1995/text-classification
本文通过GCN进行文本分类,将 words 和 documents 作为构图中的节点,通过word在document中的TF-IDF值构建 word-document edge, 通过PMI计算word-word edge的权重。
PMI计算:
其中, 表示所有划动窗口的数量, 表示所有含有 划动窗口的数量, 表示同时含有 和 两个词窗口的数量。其中, PMI值为正,说明语义相关性较高,为负,则说明语义相关性较少甚至没有。
总体来说,本文构图方法如下:
EMNLP2018: Text Level Graph Neural Network for Text Classification
论文链接: https://www.aclweb.org/anthology/D19-1345/
节点: 将文本中所有的words作为图中的节点
边: 在相邻的words之间构建一条边
AAAI2020: Tensor Graph Convolutional Networks for Text Classification
论文链接:https://arxiv.org/abs/2001.05313
本文构建了三种图进行建模(不考虑virtual graph),图中的节点由words和documents组成,并通过TF-IDF值构建 word 与 document 之间的边;对于word-word edge,不同的图中有不同的构建方法:
Semantic-based graph: 通过LSTM得到每个word的表示,通过余弦相似性计算两个word间的语义相似性,如果语义相似性达到一定的阈值,则认为两words之间存在语义关系;对于存在语义关系的words, 将通过如下方法计算他们之间的边权值:
Syntactic-based graph: 根据句法依赖解析关系构建words之间的边,并通过如下方式计算边权重:
Sequential-based Graph: 序列上下文信息描述了词语之间的共现信息,序列图中边权重通过PMI来计算:
EMNLP2019: A Lexicon-Based Graph Neural Network for Chinese NER
论文链接: https://www.aclweb.org/anthology/D19-1396.pdf
每个句子被转化为一个有向图
每个字符被作为图中的一个节点, 在每个lexicon word的第一个和最后一个字符间构建一条边, 每条边代表了潜在的可能存在词语(即lexicon word)的特征
构建一个全局的中继节点,它与图中的每个边和点都相连, 用来汇聚所有边和点的信息,从而消除词语之间的边界模糊;
由于全局中继节点的存在,图中任意两个不邻接的节点之间都是彼此的二阶邻居,可以通过两次节点更新来接收彼此的非局部的信息;
另外,对以上的图结构进行转置得到一个所有边都反向后的反向图,将反向图与原图中得到的字符表示进行拼接,作为最终的字符表示;
EMNLP2019: Leverage Lexical Knowledge for Chinese NER via Collaborative Graph Network
论文地址: https://www.aclweb.org/anthology/D19-1396.pdf
本文构建了如下三种图:
Containing-Graph(C-Graph):
目的: 辅助字符去捕捉对应self-matched lexicon word的语义信息和边界信息
点集: 句子中的字符和 lexicon words
构图如下:
Transition-Graph(T-Graph)
目的: 捕捉字符最近上下文的语义信息
点集: 句子中的字符和 lexicon words
构图如下: 建立 lexicon words 与 字符 间 和 lexion words间 的转移关系图
Lattice-Graph(L-Graph)
目的: 融合 lexicon knolwedge, 且将 Lattice 的 LSTM 结构转变为了图结构;
点集: 句子中的字符和 lexicon words
构图如下:
ACL2019: A Neural Multi-digraph Model for Chinese NER with Gazetteers
论文地址: https://www.aclweb.org/anthology/P19-1141.pdf
本文提出,希望通过Gazetteer信息提高NER的性能,因此设计了一种多维图来完成NER任务。这里介绍一下作者的构图方法,具体多维图的设计可参考论文中~
构图方法:
节点: 预料中的每个字符作为一个节点;同时,根据 gazetteer 提供的 entity type 信息,引入标识类型的节点, 例如
构图: 首先,相邻的字符间构建一条有向边;然后,根据 entity 所匹配的实体,在节点类型点与对应entity的起始字符节点和结尾字符节点间建立连边。例如,根据gazetteers认为由字符 组成的 张三一词是PER2类型的实体,则构建如下边: , , , 其中 和 是表示 起始和终止的节点。
交流学习,进群备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。
广告商、博主勿入!