在NLP中应用GCN的几种构图方法整理

GCN 的的兴起为许多NLP问题的解决提供了新的思路。通过句法依赖树构建图结构,基于此通过GCN进行NLP问题的解决已经得到了广泛应用。那么除此之外,还有哪些方法可以用于在文本中建立图结构从而使用GCN呢?

小编整理了如下几篇,分别是通过TF-IDFPMI序列关系词典 等信息进行构图的顶会论文,希望能够拓展对GCN的应用思路( ఠൠఠ )ノ

AAAI2019: Graph Convolutional Networks for Text Classification

本文通过GCN进行文本分类,将 words 和 documents 作为构图中的节点,通过word在document中的TF-IDF值构建 word-document edge, 通过PMI计算word-word edge的权重。

  • PMI计算:

其中, # W \#W #W 表示所有划动窗口的数量, # W ( i ) \# W(i) #W(i) 表示所有含有 w o r d i word _i wordi 划动窗口的数量, # W ( i , j ) \# W(i,j) #W(i,j) 表示同时含有 w o r d i word _i wordi w o r d j word _j wordj 两个词窗口的数量。其中, PMI值为正,说明语义相关性较高,为负,则说明语义相关性较少甚至没有。

  • 总体来说,本文构图方法如下:

EMNLP2018: Text Level Graph Neural Network for Text Classification

AAAI2020: Tensor Graph Convolutional Networks for Text Classification

本文构建了三种图进行建模(不考虑virtual graph),图中的节点由wordsdocuments组成,并通过TF-IDF值构建 word 与 document 之间的边;对于word-word edge,不同的图中有不同的构建方法:

  • Semantic-based graph: 通过LSTM得到每个word的表示,通过余弦相似性计算两个word间的语义相似性,如果语义相似性达到一定的阈值,则认为两words之间存在语义关系;对于存在语义关系的words, 将通过如下方法计算他们之间的边权值:

  • Syntactic-based graph: 根据句法依赖解析关系构建words之间的边,并通过如下方式计算边权重:
  • Sequential-based Graph: 序列上下文信息描述了词语之间的共现信息,序列图中边权重通过PMI来计算:

EMNLP2019: A Lexicon-Based Graph Neural Network for Chinese NER

  • 论文链接: https://www.aclweb.org/anthology/D19-1396.pdf

  • 每个句子被转化为一个有向图

  • 每个字符被作为图中的一个节点, 在每个lexicon word的第一个和最后一个字符间构建一条边, 每条边代表了潜在的可能存在词语(即lexicon word)的特征

  • 构建一个全局的中继节点,它与图中的每个边和点都相连, 用来汇聚所有边和点的信息,从而消除词语之间的边界模糊;

  • 由于全局中继节点的存在,图中任意两个不邻接的节点之间都是彼此的二阶邻居,可以通过两次节点更新来接收彼此的非局部的信息;

  • 另外,对以上的图结构进行转置得到一个所有边都反向后的反向图,将反向图与原图中得到的字符表示进行拼接,作为最终的字符表示;

EMNLP2019: Leverage Lexical Knowledge for Chinese NER via Collaborative Graph Network

本文构建了如下三种图:

  • Containing-Graph(C-Graph):

    • 目的: 辅助字符去捕捉对应self-matched lexicon word的语义信息和边界信息
    • 点集: 句子中的字符和 lexicon words
    • 构图如下:
  • Transition-Graph(T-Graph)

    • 目的: 捕捉字符最近上下文的语义信息
    • 点集: 句子中的字符和 lexicon words
    • 构图如下: 建立 lexicon words 与 字符 间 和 lexion words间 的转移关系图
  • Lattice-Graph(L-Graph)

    • 目的: 融合 lexicon knolwedge, 且将 Lattice 的 LSTM 结构转变为了图结构;
    • 点集: 句子中的字符和 lexicon words
    • 构图如下:

ACL2019: A Neural Multi-digraph Model for Chinese NER with Gazetteers

本文提出,希望通过Gazetteer信息提高NER的性能,因此设计了一种多维图来完成NER任务。这里介绍一下作者的构图方法,具体多维图的设计可参考论文中~

  • 构图方法:
    • 节点: 预料中的每个字符作为一个节点;同时,根据 gazetteer 提供的 entity type 信息,引入标识类型的节点, 例如 P E R 1 , P E R 2 , L O C 1 , L O C 2 PER^1, PER^2,LOC^1,LOC^2 PER1,PER2,LOC1,LOC2
    • 构图: 首先,相邻的字符间构建一条有向边; 然后,根据 entity 所匹配的实体,在节点类型点与对应entity的起始字符节点和结尾字符节点间建立连边。例如,根据gazetteers认为由字符 c 1 , c 2 c_1,c_2 c1,c2组成的 张三一词是PER2类型的实体,则构建如下边: ( v c 1 , v c 2 ) (v_{c_1},v_{c_2}) (vc1,vc2), ( v s P E R 2 , v c 1 ) (v_{s}^{PER2},v_{c_1}) (vsPER2,vc1), ( v c 2 , v e P E R 2 ) (v_{c_2},v_{e}^{PER2}) (vc2,vePER2), 其中 ( v s P E R 2 ) (v_{s}^{PER2}) (vsPER2) ( v e P E R 2 ) (v_{e}^{PER2}) (vePER2) 是表示 P E R 2 PER2 PER2 起始和终止的节点。

如有遗漏与错误,还请多多交流(●’◡’●)

了解更多深度学习相关知识与信息,请关注公众号深度学习的知识小屋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值