每天给你送来NLP技术干货!
来自:NLP情报局
你好,我是让算法变得更简单的Giant。
最近我的个人B站刚升到LV6,发现首页推荐的画风变了,居然为我推荐了李沐大佬的AI课程。
Oh My God! 难道这就是B站隐藏的针对LV6大佬的特殊推荐?我点开了“跟李沐学AI”专栏:
李沐何许人也?他是CMU机器学习博士,亚马逊首席科学家,代表作品有MXNet框架和《动手学深度学习》系列书籍,人称沐神。
现在在B站上不花钱还能看到经典paper解读了,李沐 Is Free!
原来真正的大佬不仅是专家学者,还能下班后刷B站到LV6,顺带录课程给我们听。关键是课程质量还贼好,听课堪比在野外读研。
短短几个月,沐神收获了16万粉丝,下面为你整理一下这份课程都包含了什么。
专栏地址:
https://space.bilibili.com/1567748478/channel/series
一、Stanford实用机器学习
斯坦福大学在2021年秋季开了一门实用机器学习课程,内容是关于机器学习在工业界的应用,沐神用中文重新对这门课做了解读!
这个系列包含的内容有机器学习基础知识,例如数据获取与清洗,特征工程构建,决策树,感知机等内容,以及循环神经网络和卷积神经网络,很适合作为入门教材。
质量怎么样呢 ?11.2日刚更新的“模型评估”,播放量已经接近1万,评论区圈粉无数:
二、读论文系列
这是最近新开的一个系列,虽然只有6个视频,却个个精华。第1期的“如何读论文”简直让我醍醐灌顶,教会我如何focus重点,把近10页论文读成半页。
其余视频解读了ResNet和Transformer等经典paper,对内容做了抽丝剥茧般解读,非常细致。
昨天午休期间,我看了Transformer(中文名:变形金刚)这一期视频。在原paper基础上,沐神还加了很多料,例如 1)BatchNorm和LayerNorm的对比,详解了什么是LN和BN(主要是计算均值和方差的时候存在差异);2) 点积Attention计算过程中,为什么要除以“根号dk”等等。
看完只有一个想法:这是我不花钱就能看到的吗?
如果刚读研那会就有这样的读论文视频,搞不好自己在科研领域还能混的风生水起。
三、动手学深度学习(Pytorch)
这一系列有76个视频,相当于《动手学深度学习v2》教科书的视频版本,覆盖了从90年代至今的重要模型。
如果你对深度学习很感兴趣或正准备入门,答应我,这本书和这门课一定不要错过!它会让你的学习效率事半功倍。
首期视频,沐神就点出了“学习深度学习的关键是动手”。课程内容围绕深度学习经典和最新模型、机器学习基础、项目实践进行,基于pytorch框架讲解,只要你有基础的Python和Numpy编程基础就能快速上手。
“动手学深度学习”网页版和完整代码可以在下方获取:
https://zh-v2.d2l.ai/
四、动手用系列
这个系列是沐神的早期视频,主要涉及应用层面,涵盖GPU、文献整理以及Windows安装CUDA等,也是十分实用。
除了课程视频以外,我对沐神在知乎上写的“五年工作反思”也深有感触
这篇文章里,沐神提到自己5年来的心路历程以及职业发展,围绕如何评估一件事所带来的社会价值,最终得出结论:我们应该专注于最有价值的事情。
不禁回忆起5年前的自己,这5年我是否蹉跎了时光,又是否真正关注在最有价值的事情上呢?
正如傻瓜定律说的那样:如果你不觉得一年前的你是“傻瓜”,那这一年你就没什么成长
好在过去几年每次的年末复盘,我对1年前的自己都有类似想法。
Mu Li is All You Need!跟着沐神一起学习,遇见更优秀的自己!
投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。
记得备注呦
整理不易,还望给个在看!