全栈大模型微调框架LLaMA Factory:从预训练到RLHF的高效实现

LLaMAFactory是一个由北京航空航天大学的郑耀威开发的开源框架,用于高效微调大模型。它在GitHub上广受欢迎,支持上百种模型的适应和优化,包括LoRA加速和微调技巧。分享将深入解析框架的构建和使用方法,助力科学研究和工程实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

17695753c65ad8563ef659d24388607e.png

主题

全栈大模型微调框架LLaMA Factory:从预训练到RLHF的高效实现

个人简介

9c26d976b2778ee69fd31c45d19d3b79.jpeg郑耀威,北京航空航天大学博士生。以第一作者在CVPR、AAAI、WWW等国际会议发表多篇论文,担任AAAI、EMNLP、Neural Computation等会议和期刊审稿人。获得华为杯、蓝桥杯全国一等奖、北航大学生年度人物、北航博士生奖学金。大模型微调框架LLaMA Factory发起人和主要开发者,GitHub开源项目获得超过1万Stars。

项目地址:https://github.com/hiyouga/LLaMA-Factory

内容概要

LLaMA Factory是一个高效、易用、可扩展的开源全栈大模型微调框架,半年内在GitHub开源社区获得10000关注,并得到Hugging Face、Avalon Labs、美团等多家国内外企业的关注或落地应用。本次分享将从大模型高效训练的角度详细剖析LLaMA Factory的构建动机与组成模块,包括上百种大模型的全栈微调适配原理,LoRA算子优化加速方法,多种微调Trick集成思路等等。

引言部分

LLaMA、Mistral、Qwen、ChatGLM等国内外大模型在开源后得到了众多关注,然而如何将大模型适配到各自的任务上,则依赖于对大模型的进一步微调。LLaMA Factory作为一个通用、高效的大模型微调框架,能在消费级的硬件资源上对上百种大模型完成调优,并使用不同形态的数据集解锁大模型的通用理解、多轮对话、工具调用等能力。LLaMA Factory通过简单高效的实现,使我们能够在短时间内开展多样化的科学研究和工程应用。

时间

2024.3.9 10:30-11:30
本周六上午不见不散~

视频号直播预约~

进群

为了方便讨论,建立了一个作者交流群,探讨更多细节~

ac6cbf8a3130f4def6870034f5f28269.png

备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

7164ee667afda39c925090005bf47aca.png

id:DLNLPer,记得备注呦

### RLHFLLaMA模型工厂实施和设置 在探讨RLHF(基于人类反馈的强化学习)与LLaMA模型相关的工厂或生产设施时,需理解这些术语并非指物理意义上的工厂或制造场所。相反,“工厂”在此背景下指的是软件开发中的模式——即用于创建特定配置下的对象实例的一种设计模式。 对于LLaMA系列模型而言,在应用RLHF的过程中涉及到了一种称为“微调库”的概念。具体来说,TRL、Axolotl 和 LLaMA-Factory实现了ORPO的主要微调库[^1]。通过这些工具包可以更高效地完成对大型预训练语言模型如Llama 3 的优化调整工作。 #### 实现细节 当涉及到实际操作层面时: - **环境准备**:确保安装了必要的依赖项以及选择了合适的硬件平台来支持大规模计算需求。 - **数据收集与处理**:构建高质量的人类偏好标注语料库作为奖励信号源;这一步骤至关重要因为它直接影响到后续训练过程的质量。 - **模型初始化**:加载基础版本的大规模预训练语言模型(例如Llama 3),并根据项目需求对其进行初步参数设定。 - **策略网络定义**:采用Actor-Critic架构或其他适合的方法建立能够接收状态输入并输出行动概率分布的神经网络结构。 - **交互式评估循环**:让经过初始微调后的代理(agent)参与到由人工评判员参与的真实对话场景模拟当中去,并依据所获得正负向反馈不断迭代改进其行为决策能力直至收敛于最优解附近为止。 ```python from transformers import AutoModelForCausalLM, TrainerCallback import torch class CustomRewardFunction(TrainerCallback): def __init__(self, reward_model_path="path/to/reward/model"): self.reward_model = AutoModelForSequenceClassification.from_pretrained(reward_model_path) def on_evaluate(self, args, state, control, metrics=None, **kwargs): # Implement custom evaluation logic here using the reward function. pass def train_with_rlhf(model_name_or_path, dataset, output_dir="./results", epochs=3): from trl import PPOConfig, PPOTrainer config = PPOConfig( model_name=model_name_or_path, learning_rate=1.41e-5, ppo_epochs=epochs, max_grad_norm=0.5, seed=42, batch_size=64, forward_batch_size=16 ) trainer = PPOTrainer(config=config) trainer.add_callback(CustomRewardFunction()) for epoch in range(epochs): trainer.train(dataset) train_with_rlhf("mlabonne/OrpoLlama-3-8B", your_custom_dataset) ``` 上述代码片段展示了如何利用`trl`库来进行基于PPO算法框架内的强化学习微调流程[^4]。值得注意的是这里还引入了一个自定义回调函数用来集成外部打分机制从而更好地指导整个训练进程朝着期望方向发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值