由于时间关系后续重新整理
前3章
确界存在定理,单调有界收敛(根据确界),夹逼准则,闭区间套,有界必有收敛子列(根据闭区间套),基本数列和柯西收敛原理(根据确界存在和有界必有收敛子列得出反例),压缩性原理(得出是基本数列)。海涅定理(假设不连续,取子列),函数的柯西收敛原理。闭区间连续必有界,最值定理,零点定理,中间值定理。一致收敛,一致连续的充要条件(假设非一致连续取子列),康托尔定理即闭区间连续必有一致连续(根据非一致连续),开区间一致连续的充要条件(当开区间一致连续时,取趋向端点的收敛子列,它是基本数列,同时它的函数也是基本数列根据heine定理知趋向于端点的极限存在)。复合函数的极限和反例。反函数的连续(用定义),求导。
若连续可考虑归结原则,致密性定理取子列,确界存在定理使用数列极限趋于上确界。
1.无穷远处极限存在,则一致连续
这是因为极限存在,则满足函数的柯西收敛原理(或者用趋向于无穷大时的heine定理):
容易知道,函数在无穷大时,任意的两个点,函数值的差都趋向于0 ,那么判断一致连续时,它显然能保证缩小了点的范围,函数值的差还是趋于0的,因此肯定也是一致连续的。也就是说,函数在无穷大时极限存在,都不需要保证x1-x2的值是一个很小的范围,就能让f(x1)-f(x2)是无穷小量。
2. 最值定理
画圈的地方用到heine定理,没明说,想了好久。
3. 有限覆盖定理证明闭区间一致连续
有限个子集覆盖,意味着有限个邻域区间的交,这样取的x点也是有限个的,取区间的最小值,这样就保证该区间长度只和ξ和一个固定的点相关,固定的点看成常数,然后就能保证小于这个最小区间时,函数值相减小于ξ,同时取的领域满足而与x取哪个点无关。
4. 导函数极限定理
导数存在,导函数极限不一定存在(导函数不可能有跳跃间断点,因为有跳跃间断点的话,两边的极限值分别等于左右导数,与该点导数存在矛盾)。
函数存在原函数,但是函数不连续,如的导数不连续,但是处处都有定义,其原函数为
,
每一处都是可导的,如下图所示。
导数介值定理通过构造F(x) = f(x) + C,然后在某一点导数为0。
5. 递推公式求极限
6. 有界必有上确界,单调有界必收敛,且收敛于上确界。不收敛,则不是基本数列,则存在N,当m,n大于N时,xm-xn大于某个值
第5章 微分中值定理及其应用(泰勒展开证明题合集-百度文库)
构造
对于泰勒公式而言,展开到一阶导数就是拉格朗日中值定理,展开到二阶导数常常用来证明二阶导数不等式,可以理解为关于二阶导数的中值定理:
此类题目常常是告诉你f(0)=0, f(1)=0,f(x0)处取最大值2这样的条件,然后让证明存在二阶导数大于等于4或者小于等于M。做法比较固定,就是在x=0,x=1处展成泰勒,然后两个等式相减,就可以得到二阶导数的范围。也就是说,证明导数的不等式,优先考虑泰勒公式,如果不等式中出现那么大概率是在(a+b)/2处展开,如果是3阶导数需要展开到第3阶等等。
琴森不等式:
用数学归纳法:1减去第k+1个数,然后均分给前面的k个数。
将函数在x=0处展开成皮亚诺余项的泰勒公式,需提取前面的2,若
,令u=1+sinx,然后在展开sinx时,当x趋于0时,u=1+sinx不在趋于0,这样带入到
时,u不趋于0,即o(u)和o(x)不是等价的,所以正确做法是:
,这样x->0,sinx/2->0。将sinx展开和
分别展开,再讲sinx/2代入到
。
拉格朗日插值多项式:给定n+1个点x0,x1,...xn和它的函数值f(x0),...,那么可以求得一个n次多项式,它的函数值相等:
实际上,我们直接写出来更好理解,显然这样定义的pn(x)能够满足x0,x1等n个点,多项式pn(x)的函数值等于f(x0),f(x1),...
另一种是Taylor多项式,它是同一个点x0处,满足函数值和若干阶导数相等,比较简单不做叙述。
第6、7章 不定积分和定积分
原函数:F(x)求导是f(x)。
可积:黎曼可积的简称,问可积,考虑的是闭区间,不要考虑反常积分。
1.函数有有限个间断点的话可积,但是没有原函数,因为这些间断点都不连续,更不可能在这些间断点处可导(可导必连续),即可积不代表有原函数。
2.函数有原函数,也不一定连续。如的导数不连续,但是他的原函数是
。
3.f(x)连续,一定有原函数,积分上限函数就是其中的一个原函数,换一种说法就是此时积分上限函数存在连续的导函数f(x),见课本积分上限函数。
4.黎曼函数在有理点不连续,无理点连续,极限总是为0。黎曼函数是可积的:
5. 不可积,也会有原函数 ,例子暂缺
第10章 函数项级数
极限和S(x)等于n趋向无穷大时,Sn(x)的极限,同时S(x)的每个点的值是每个S(x0)求出来以后,形成的曲线的值。
级数绝对收敛,则交换顺序还是收敛,收敛于同一个值,常常用来计算两个绝对收敛级数的乘积,他们等于柯西乘积。
第11章
聚点:任意领域包含属于S的无限多个点。内点和非孤立点的边界点都是聚点。
聚点都属于S,S为闭集。开集:全部是内点。
第12章 曲面的法线和切平面方程(这一章要用上克莱姆法)
用两个参数(u,v)表示(x,y,z): x=x(u,v), y = y(u,v), z= z(u,v)。
z= z(u(x,y), v(x,y)), 考虑 F(x,y,z) = z(u(x,y), v(x,y)) - z = 0,F(x,y,z)=0的法向量是(Fx, Fy, Fz),从这个方向入手理解。
在求曲面面积时,曲面微元等于,即两个切向量的外积,来表示那块平行四边形面积,平行四边形面积等于边长a*边长b*他们的正弦值,又等于a和b外积的模,du和dv看成是长度,他们没有方向看成常数。
最后得到 因为垂直于这两个切向量,所以它是法向量,求出来正好也是12章参数方程求出来的法向量,它的模长再乘以dudv就是dS:
求向量积可以用行列式辅助计算:
最后计算的结果其实是需要进行转置,才能得到雅可比行列式的写法:
这个地方比较坑,差点把雅可比行列式都给弄错了,弄错了就完了,后面很多把曲面法向量写成雅可比行列式的。
当z=f(x,y)时,参数方程就是x = x,y = y
第二类曲面积分:
cosa*dS = dydz而不是dxdy。dS投影到xoy面时,曲面和xoy面夹角等于法向量夹角,xoy面的法向量与z轴平行,为(0,0,1)。 dS的一个法向量为(-fx, -fy, 1)(如果是显示方程z=f(x,y)),单位向量为(cosa, cosb ,cosr)。所以dS和面xoy夹角的cos值等于dS的cosr值,所以cosr*dS = dxdy。同理cosa*dS = dydz, cosb*dS = dzdx,所以z=f(x,y)的曲面积分为:
参数方程曲面:
参数曲面的法向量通过外积记忆 。
常见考点:
1. 级数:求收敛范围。一致收敛。
2. 化简微分方程。
3. 泰勒公式。
4. 拉格朗日数乘法求极值。