1.线性方程组的解
克拉姆法则存在性和唯一性的证明:
类题 :
2. 向量组的秩,即一组向量的极大线性无关组个数
若r=s,方程组的秩为s时,则得到的还是线性无关的向量。即A=PB,P可逆,则A的秩等于B的秩。
下面证明:向量组的秩为r,则任意r个线性无关的向量都是极大线性无关组,思路就是这r个向量加上任意向量,凑成r+1个向量,都可以由极大组线性表示,所以他们相关,从而任意r个线性无关的向量满足极大组的特点。
3. 行秩(行向量组的极大组个数)=列秩=矩阵的秩
4. 等价:向量组互相表示,向量组和自己的极大组等价,等价则极大组个数相同,即维度相同。
5. 方程组的系数矩阵秩为r,则基础解系的个数等于n-r。若AB=O,B的秩为n,则AX=0的未知量为n个,A的秩为0,即A=0。
detA = |A| 不等于0,则AX=0的解只有零解,等价于任意一组不全为0的实数代到方程组中,必有某行方程结果不为0。
6.向量组中的任一一个无关组可以扩充为极大组。
7. 任取r个无关的变量都是一个向量组的极大组,和向量组等价
8. 若向量组A可以由向量组B表示,且他们秩相等,则等价。向量组B可以表示A+B,所以B的极大组是A+B的极大组,因为B的极大组也可以表示A了,即A和B互相表示,即等价。
将两个向量组合成一起考虑:
9.A是B的子集,A的秩等于B,则A=B。在证明像和核是直和且相加等于V时尤为重要
10. 选择非当前行的代数余子式可以作为齐次方程组的基础解系