第3章 线性方程组

1.线性方程组的解

克拉姆法则存在性和唯一性的证明:

类题 :

2. 向量组的秩,即一组向量的极大线性无关组个数

 若r=s,方程组的秩为s时,则得到的还是线性无关的向量。即A=PB,P可逆,则A的秩等于B的秩。

下面证明:向量组的秩为r,则任意r个线性无关的向量都是极大线性无关组,思路就是这r个向量加上任意向量,凑成r+1个向量,都可以由极大组线性表示,所以他们相关,从而任意r个线性无关的向量满足极大组的特点。

3. 行秩(行向量组的极大组个数)=列秩=矩阵的秩 

4. 等价:向量组互相表示,向量组和自己的极大组等价,等价则极大组个数相同,即维度相同。

5. 方程组的系数矩阵秩为r,则基础解系的个数等于n-r。若AB=O,B的秩为n,则AX=0的未知量为n个,A的秩为0,即A=0。

detA = |A| 不等于0,则AX=0的解只有零解,等价于任意一组不全为0的实数代到方程组中,必有某行方程结果不为0。

6.向量组中的任一一个无关组可以扩充为极大组。

7. 任取r个无关的变量都是一个向量组的极大组,和向量组等价

8.  若向量组A可以由向量组B表示,且他们秩相等,则等价。向量组B可以表示A+B,所以B的极大组是A+B的极大组,因为B的极大组也可以表示A了,即A和B互相表示,即等价。

将两个向量组合成一起考虑:

9.A是B的子集,A的秩等于B,则A=B。在证明像和核是直和且相加等于V时尤为重要

 

10. 选择非当前行的代数余子式可以作为齐次方程组的基础解系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值