最全面的各品牌(华为&浪潮&SUMA&超微&Dell&H3C&联想)深度学习推理服务器规格及各厂商GPU性能对比

目录

一、2U 8卡深度学习推理服务器对比 

二、4U 4卡(双宽)PCIe深度学习训练/推理服务器 

三、4U 8卡(双宽)PCIe深度学习训练服务器 

四、8卡 NVLink深度学习训练服务器 

五、GPU类型介绍

六、GPU厂商产品介绍

七、GPU发展趋势

八、NVIDIA GPU架构和产品 

8.1 NVIDIA Ampere系列产品 

8.2、NVIDIA Ampere系列产品 

九、Cambricon 主力产品 

​编辑十、 国产GPU卡汇总

十一、寒武纪Data Center Product Roadmap 

​编辑 11.1、MLU270 性能优势

11.2、MLU290-M5 AI训练卡 

十二、燧原科技 

十三、比特大陆产品研发历程 

13.1 比特大陆算丰系列AI加速卡 

13.2 比特大陆SC5 产品规格

 十四、海光 DCU 2号


 

SUMA

浪潮

华为

超微

Dell

HPE/H3C

联想

2U

4卡(T4

X740-H30

NF5280 M5

CS5280H

2288H V5

2029GP-TRT

R740xd

R7425

R7525

DL380 Gen10

DL380 Gen10 +

SR670

SR665

4卡(V100

8卡(T4

X740-H30

Atlas 800

-3000

2029P-TXRT

DL380 Gen10+

R4900 G3

R4950 G5

8卡(V100 PCIe

NF5288 M5

8卡(V100 NVLink

4U

4卡(V100/A100 PCIe

X745-H30

7049GP-TRT

T640

8卡(V100/A100 PCIe

X785-H30

NF5468 M5

NF5468 A5

G560 V5

Atlas 800

-9000

4029GP-TRT

4124GS-TNRT

DSS8440

R5200 G3

R5300 G3

R4300 G3

HG680X

16卡(T4

G530 V5

G2500

6049GP-TRT

8卡(V100 NVLink

X795-H30

NF5468 M5

NF5488 M5

G560 V5

Atlas 800

-9000

4029GP-TVRT

6500 G10

4-6U

8卡(A100 NVlink

NF5488 A5

420GP-TNAR

R5500 G5

10U

16卡(V100 NVlink

NF5888 M5

9029GP-TNRT

一、2U 8卡深度学习推理服务器对比 

SUMA

浪潮

浪潮

Dell

Dell

华为

华为

H3C

H3C

联想

联想

型号

X740-H30

NF5280M5

CS5280H

R740xd

R7525

2288H V5

Atlas 800

—3000

R4900 G3

R4950 G5

SR670

### 华为 ODE 试卷及相关考试资料 华为 ODE(Online Developer Exam)试卷通常涉及算法设计、数据结构应用以及实际编程能力测试。以下是关于您提到的三道题目及其相关内容的解析: #### 题目一:书籍叠放问题 该问题是经典的动态规划问题之一,目标是找到长递增子序列(LIS)。通过将书籍按照 `(l, w)` 排序并寻找满足条件的大堆叠数量来解决此问题。 ```python def max_books_stack(books): books.sort(key=lambda x: (x[0], x[1])) # 按照长度和宽度升序排列[^1] dp = [1] * len(books) for i in range(len(books)): for j in range(i): if books[i][0] > books[j][0] and books[i][1] > books[j][1]: dp[i] = max(dp[i], dp[j] + 1) # 动态转移方程 return max(dp) # 示例输入 books = [(4, 5), (3, 4), (2, 3), (6, 7)] print(max_books_stack(books)) # 输出大可叠加书籍数量 ``` 上述代码实现了基于动态规划的方法求解多可以叠放的书籍数量。 --- #### 题目二:CPU算力分配问题 这是一个典型的双指针优化问题,在两数组间匹配特定差值关系。核心思路在于减少暴力枚举的时间复杂度。 ```python from collections import defaultdict def cpu_power_allocation(A, B): sumA, sumB = sum(A), sum(B) half_diff = (sumA - sumB) / 2 b_map = defaultdict(int) for num in B: b_map[num] += 1 result = float('inf') for a in A: b = a - half_diff if b in b_map and b_map[b] > 0: result = min(result, abs(a)) return int(result) if result != float('inf') else -1 # 示例输入 A = [1, 2, 3] B = [2, 3, 4] print(cpu_power_allocation(A, B)) # 输出小可行解 ``` 以上方法利用哈希表加速查找过程,从而降低时间开销至线性级别[^2]。 --- #### 题目三:约瑟夫环问题变种 这是经典约瑟夫环问题的一个变形版本,主要考察循环链表或者模拟队列的应用场景。 ```python def josephus_survivors(n, m): people = list(range(1, n + 1)) index = 0 while len(people) >= m: index = (index + m - 1) % len(people) people.pop(index) return sorted(people) # 示例输入 n, m = 7, 3 print(josephus_survivors(n, m)) # 输出剩余人员原始位置编号 ``` 这段程序采用列表操作实现删除逻辑,并终返回符合条件的结果集合[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值