LAPSRN
论文
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
模型结构
LapSRN模型主要有两个部分,即拉普拉斯金字塔预测模型和残差学习模型。
算法原理
该模型是一个图像超分辨率模型,通过逐步放大结构,包括特征提取和图像重建,在每个阶段通过卷积和转置卷积层实现对图像的逐级提升。
环境配置
Docker(方法一)
此处提供光源拉取docker镜像
docker pull docker pull image.sourcefind.cn:5000/dcu/admin/base/tensorflow:1.15.1-centos7.6-dtk-22.10.1-py37-latest
docker run -it --network=host --name=bert_prof --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=32G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 image.sourcefind.cn:5000/dcu/admin/base/tensorflow:1.15.1-centos7.6-dtk-22.10.1-py37-latest
pip install -r requirements.txt
Dockerfile(方法二)
dockerfile使用方法
docker build --no-cache -t lapsrn:latest .
docker run -dit --network=host --name=lapsrn --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 lapsrn:latest
docker exec -it lapsrn /bin/bash
Anaconda(方法三)
关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装。
DTK驱动:dtk22.10
python:python3.7
tensorflow==1.15.1+gitf56f27ab.dtk2210
Tips:以上dtk驱动、python等DCU相关工具版本需要严格一一对应
其它非深度学习库参照requirements.txt安装:
pip install -r requirements.txt
数据集
模型使用数据为 DIV2K
项目中已提供用于试验训练的迷你数据集,训练数据目录结构如下,用于正常训练的完整数据集请按此目录结构进行制备:
── datasets
│ ├── DIV2K_train_HR
│ ├── xxx.png
│ ├── xxx.png
│ └── ...
│ └── DIV2K_train_LR_bicubic
│ ├── xxx.png
│ ├── xxx.png
│ └── ...
│ └── DIV2K_valid_HR
│ ├── xxx.png
│ ├── xxx.png
│ └── ...
│ └── DIV2K_valid_LR_bicubic
│ ├── xxx.png
│ ├── xxx.png
│ └── ...
训练
单机单卡
python main.py
推理
python main.py -m test \
-f TESTIMAGE
result
测试图
精度
测试数据:DIV2K ,使用的加速卡:Z100L。
根据测试结果情况填写表格:
LAPSRN | loss |
---|---|
DIV2K | 0.461 |
应用场景
算法类别
图像超分
热点应用行业
设计
,制造
,交通