lapsrn_tensorflow图像超分算法模型

LAPSRN

论文

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

模型结构

LapSRN模型主要有两个部分,即拉普拉斯金字塔预测模型和残差学习模型。

算法原理

该模型是一个图像超分辨率模型,通过逐步放大结构,包括特征提取和图像重建,在每个阶段通过卷积和转置卷积层实现对图像的逐级提升。

环境配置

Docker(方法一)

此处提供光源拉取docker镜像

docker pull docker pull image.sourcefind.cn:5000/dcu/admin/base/tensorflow:1.15.1-centos7.6-dtk-22.10.1-py37-latest
docker run -it --network=host --name=bert_prof --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=32G  --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 image.sourcefind.cn:5000/dcu/admin/base/tensorflow:1.15.1-centos7.6-dtk-22.10.1-py37-latest
pip install -r requirements.txt

Dockerfile(方法二)

dockerfile使用方法

docker build --no-cache -t lapsrn:latest .
docker run -dit --network=host --name=lapsrn --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=16G  --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 lapsrn:latest
docker exec -it lapsrn /bin/bash

Anaconda(方法三)

关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装。

DTK驱动:dtk22.10
python:python3.7
tensorflow==1.15.1+gitf56f27ab.dtk2210

Tips:以上dtk驱动、python等DCU相关工具版本需要严格一一对应

其它非深度学习库参照requirements.txt安装:

pip install -r requirements.txt

数据集

模型使用数据为 DIV2K

项目中已提供用于试验训练的迷你数据集,训练数据目录结构如下,用于正常训练的完整数据集请按此目录结构进行制备:

 ── datasets
       │   ├── DIV2K_train_HR
       │             ├── xxx.png
       │             ├── xxx.png
       │             └── ...
       │   └── DIV2K_train_LR_bicubic
       │             ├── xxx.png
       │             ├── xxx.png
       │             └── ...
       │   └── DIV2K_valid_HR
       │             ├── xxx.png
       │             ├── xxx.png
       │             └── ...
       │   └── DIV2K_valid_LR_bicubic
       │             ├── xxx.png
       │             ├── xxx.png
       │             └── ...

训练

单机单卡

python main.py

推理

python main.py -m test \
               -f TESTIMAGE

result

测试图

精度

测试数据:DIV2K ,使用的加速卡:Z100L。

根据测试结果情况填写表格:

LAPSRNloss
DIV2K0.461

应用场景

算法类别

图像超分

热点应用行业

设计,制造,交通

源码仓库及问题反馈

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值