HPC应用&生命科学领域变异识别软件-deepvariant详细安装使用

目录

1 软件简介

2 软件版本

3 安装方式

4 测试运行


变异识别-deepvariant

1 软件简介

CPU版本:     DeepVariant是一个基于深度学习的变体调用程序,是一个预训练好的基于人类基因组的tensorflow模型,它接受对齐读取(BAM或CRAM格式),从中生成叠列图像张量,使用卷积神经网络对每个张量进行分类,最后以标准VCF或gVCF文件的形式报告结果。该应用采用docker集成运行环境,使用时不需要复杂的安装,只需要将镜像下载下来,将docker目录与宿主机的目录进行映射即可。 DCU版本:     该软件GPU加速版本原由google公司维护,采用docker构建应用,后端采用cuda加速。目前DCU版本采用非镜像构建,其推理过程使用DCU进行加速,功能上和原生GPU版本保持一样。

2 软件版本

r1.1.0 CUDA

[CPU]

3 安装方式

  • CPU版本安装过程 cpu版本在线安装:

    BIN_VERSION="1.0.0"
    docker pull google/deepvariant:"${BIN_VERSION}"

    运行程序:

    docker run -v "${INPUT_DIR}":"/input" -v "${ OUTPUT_DIR }":"/output" google/deepvariant:"${BIN_VERSION}"  /opt/deepvariant/bin/run_deepvariant --model_type=WGS  --ref=/input/ucsc.hg19.chr20.unittest.fasta --reads=/input/NA12878_S1.chr20.10_10p1mb.bam --regions "chr20:10,000,000-10,010,000" --output_vcf=/output/output.vcf.gz --output_gvcf=/output/output.g.vcf.gz --intermediate_results_dir /output/intermediate_results_dir  --num_shards=1
    

    上述命令中INPUT_DIR和OUTPUT_DIR是预先设置好的系统变量,INPUT_DIR路径应该包含测试数据,该应用有自带数据集,通过下面方式下载

    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/NA12878_S1.chr20.10_10p1mb.bam
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/NA12878_S1.chr20.10_10p1mb.bam.bai
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/test_nist.b37_chr20_100kbp_at_10mb.bed
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/test_nist.b37_chr20_100kbp_at_10mb.vcf.gz
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/test_nist.b37_chr20_100kbp_at_10mb.vcf.gz.tbi
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/ucsc.hg19.chr20.unittest.fasta
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/ucsc.hg19.chr20.unittest.fasta.fai
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/ucsc.hg19.chr20.unittest.fasta.gz
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/ucsc.hg19.chr20.unittest.fasta.gz.fai
    wget -P ${INPUT_DIR} "${DATA_HTTP_DIR}"/ucsc.hg19.chr20.unittest.fasta.gz.gzi

    cpu版本离线安装: 本地镜像deepvariant.tar,使用docker load < ./deepvariant.tar可以加载。然后通过该镜像可以构建容器,与上面使用方式一样。测试数据在quickstart-testdata中。

  • DCU安装
    确保系统中有rocm版本的tensorflow1.14 DCU加速版本不需要安装,通过上面ROCM链接下载即可以使用。

4 测试运行

cd deepvariant/bin
./run_deepvariant --model_type=WGS  --ref=../../input/ucsc.hg19.chr20.unittest.fasta --reads=../../input/NA12878_S1.chr20.10_10p1mb.bam --regions "chr20:10,000,000-10,010,000" --output_vcf=../../output/output.vcf.gz --output_gvcf=../../output/output.g.vcf.gz --intermediate_results_dir ../../output/intermediate_results_dir  --num_shards=1

运行完毕后会生成结果报告output.visual_report.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值