windows下安装yolov11的GPU版本

在CSDN下搜索了一圈,给yolov11配置环境,已经有很多博主写了详细的文章。刚好我自己的笔记本电脑需要安装yolov11,把配置过程记录下。

1、配置思路

使用miniconda作为包管理工具,先单独安装pytorch、torchvision,再安装yolov11,最后通过conda install安装cudatoolkit。

2、安装流程

2.1 我的电脑配置(华硕天选2)

  1. 操作系统:Windows 10 专业版
  2. 处理器:11th Gen Intel® Core™ i9-11900H @ 2.50GHz 2.50 GHz
  3. RAM:16GB
  4. GPU:NVIDIA GeForce RTX 3060 Laptop GPU(6.0 GB)

2.2 确认GPU驱动版本以及可安装CUDA的最高版本

在命令端窗口执行

nvidia-smi

可看到驱动版本、CUDA的最高版本,截图如下:
在这里插入图片描述

2.3 安装miniconda

其实,是安装anaconda还是miniconda区别不大,只是我个人喜好不同。打开网址:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/
选择Miniconda3-py310_23.1.0-Windows-x86_64.exe。
在这里插入图片描述
下载完成后,双击exe,按照提示安装即可。

2.4创建anacona环境

在启动菜单中点击conda的命令提示图标,进入命令窗口。
在这里插入图片描述
在这里插入图片描述

为了加快安装进度,设置conda下载包的通道为清华大学下镜像源,执行以下命令:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
使用conda指令创建环境,我是创建的环境命名为yolov11:

conda create --name yolov11 python=3.9

进入环境:

conda activate yolov11

在这里插入图片描述

2.5 安装pytorch

从上面查询我GPU驱动的信息可知道,我的环境是最高可以安装CUDA的12.3的版本,yolov11对pytorch的版本要求是版本>1.8即可。我选择的是安装2.3.1版本。安装指令为下:

conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidia

这条指令在网络畅通的情况下,大概需要15分钟左右的时间。

如果大家想安装其他的版本,可以从官网获取,获取方式如下:

  1. 进入官网:https://pytorch.org/

  2. 点击Get Statred
    在这里插入图片描述

  3. 点击 install previous versions of PyTorch
    在这里插入图片描述

  4. 选择想要安装的版本对应的conda指令
    在这里插入图片描述

2.6安装yolov11

一条指令:

conda install ultralytics

2.7 安装cudatoolkit和cudnn

通常来说,很多博主推荐的方式,是去英伟达的官网下载相应的cudatoolkit和对应的cudnn库。其是,在使用conda进行包管理的情况下,是可以使用conda进行cuda安装的,安装指令如下:

conda install cudatoolkit

这条指令大概需要10分钟时间,可以去喝杯茶。

使用conda进行cuda安装,有几点优势:
1.conda会根据已经安装好的pytorch需要的cuda、cudnn版本,自动进行安装,安装时间还是比较方便的。
2.cuda是与当前虚拟环境绑定在一起的,方便多个cuda版本进行管理。
劣势:
1.不方便C++进行cuda开发。

3、环境测试

使用pycharm新建一个python项目,编写如下代码:

from ultralytics import YOLO

if __name__ == '__main__':
    # Load a model
    model = YOLO("yolo11n.pt")

    # Train the model
    train_results = model.train(
        data="coco8.yaml",  # path to dataset YAML
        epochs=100,  # number of training epochs
        imgsz=640,  # training image size
        device="0",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
        batch=16,
        workers = 8
    )

执行,程序将自动下载yolov11n.pt、coco8数据集,并启动训练。
在这里插入图片描述

在这里特别提示下,在windows下,一定要加:

if __name__ == '__main__':

不然,将会报一堆的错误,如:freeze_support()

in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
    raise RuntimeError(f'DataLoader worker (pid(s) {pids_str}) exited unexpectedly') from e
RuntimeError: DataLoader worker (pid(s) 8904, 9648, 2968, 11124, 6336, 2120, 4452, 10160) exited unexpectedly

在这里插入图片描述
在这里插入图片描述

4、总结下

安装yolov11的环境,说难不难,说简单嘛,对于才上手的小伙伴还是有点麻烦的。别无他法,亲身去安装一次,有问题就百度。

### 关于 YOLOv11 在 Jupyter 环境中的下载与安装 #### 一、YOLOv11 的源码获取 为了成功运行 YOLOv11,在开始之前需要先完成其源码的下载工作。可以通过官方仓库或者指定链接来获取最新版本的代码库[^3]。 ```bash git clone https://github.com/your-repo/yolov11.git cd yolov11 ``` 上述命令会克隆 YOLOv11 的 Git 存储库到本地环境,并切换至该目录下继续操作。 --- #### 二、Jupyter Notebook 安装与配置 在服务器端部署并使用 Jupyter Notebook 是一种常见的开发方式,尤其适合深度学习项目如 YOLOv11。以下是具体步骤: ##### 1. **安装 Jupyter** 如果尚未安装 Jupyter Notebook,则可以利用 `pip` 或者 `conda` 来完成安装过程。推荐优先尝试通过 Conda 渠道进行管理,因为它能更好地处理依赖关系。 ```bash conda install jupyterlab # 如果不适用 Conda, 可以考虑 pip 方式替代 pip install notebook ``` 注意:某些情况下可能遇到 Python 包无法正常加载的情况,比如中文支持包缺失等问题,此时可参考解决方案说明[^2]。 ##### 2. **生成配置文件** 创建专属的安全配置文件用于后续自定义设置。 ```bash jupyter notebook --generate-config ``` 此步将在用户的主目录下的 `.jupyter` 文件夹中生成名为 `jupyter_notebook_config.py` 的配置脚本。 ##### 3. **设定登录密码** 为保护远程连接安全,需提前加密个人密码存储起来供验证机制调用。 ```python from notebook.auth import passwd passwd() ``` 执行以上交互程序后输入期望使用的口令字符串即可得到对应的哈希值形式表示结果保存下来备用。 ##### 4. **调整参数选项** 编辑刚才提到过的配置文档位置路径通常类似于 `/home/user/.jupyter/jupyter_notebook_config.py`, 找寻如下字段开启特定功能开关: ```python c.NotebookApp.ip = '0.0.0.0' c.NotebookApp.open_browser = False c.NotebookApp.password = u'sha1:<hash>' # 替换实际计算所得 hash 值部分 c.NotebookApp.port = 8888 # 自定开放监听端口号范围内的任意数值均可接受 ``` --- #### 三、集成多环境 Kernel 支持 当存在多个独立隔离的工作区需求时(例如不同版本 TensorFlow),应当添加额外 kernels 到当前实例里去满足灵活切换的要求。 ```bash ipython kernel install --user --name=myenv ``` 这样就能保证即使在同一台机器上也能分别测试各自互不影响的状态了[^1]. --- #### 四、启动服务及访问地址确认 最后一步就是正式启动整个框架体系结构准备完毕之后的服务进程啦! ```bash jupyter lab --allow-root & ``` 打开浏览器进入形如 http://<server-ip>:8888 地址栏即可见熟悉的界面呈现出来咯~ --- ### 总结 综上所述,从基础工具链搭建直至高级特性启用均已完成描述覆盖全流程指导手册级别内容展示给大家参考借鉴之用[^4].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深图智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值