pytorch教程之损失函数详解——多种定义损失函数的方法

前言:前面的系列文章已经详细介绍了使用torch.nn.Module来实现自己定义的模型、自定义层,本文将继续来说明如何自定义损失函数,需要明确一个观点,不管是定义层还是损失函数,方法有很多,但是通过统一的接口nn.Module是最便于查看的,这也是pytorch的优点之一,模型、层、损失函数的定义具有统一性,都是通过Module类来完成,不像tensorflow那样不规范。具体可以参考前面两篇文章:

pytorch教程之nn.Module类详解——使用Module类来自定义模型

pytorch教程之nn.Module类详解——使用Module类来自定义网络层

一、回顾

1.1 关于nn.Module 和 nn.functional 区别和联系

前面讲过,自定义层的时候可以通过nn.Module 和 nn.functional二者来完成,但是推荐使用前者,为什么呢?

简答的说就是, nn.Module是一个包装好的类,具体定义了一个网络层,可以维护状态和存储参数信息;而nn.functional仅仅提供了一个计算,不会维护状态信息和存储参数。在Module类内部,层的功能其实又是通过nn.functional来实现的。

对于一些不需要存储参数和状态信息的层,比如activation函数,比如(relu, sigmoid等),dropout,pooling等没有训练参数,可以使用functional模块,当然也可以使用nn.Module类来完成。

1.2 损失函数和层的共性

本质上来说,损失函数和自定义层有着很多类似的地方,他们都是通过对输入进行函数运算,得到一个输出,这不也就是层的功能吗?只不过层的函数运算比较不一样,可能是线性组合、卷积运算等,但终归也是函数运算,正是基于这样的共性,所以我们可以统一的使用nn.Module类来定义损失函数,而且定义的方式也和前面的层是大同小异的。

二、自定义的损失函数

2.1 通过nn.Module类来实现自定义的损失函数

鉴于前面所说的,损失函数的本质也就是“对输入进行函数运算,得到一个输出”,所以我们可以像定义层一样自定义一个损失函数,比如我自己定义一个 MSE 损失函数,代码如下:

class My_loss(nn.Module):
    def __init__(self):
        super().__init__()   #没有需要保存的参数和状态信息
        
    def forward(self, x, y):  # 定义前向的函数运算即可
        return torch.mean(torch.pow((x - y), 2))

在使用这个巡视函数的时候只需要如下即可:

criterion = My_loss()

loss = criterion(outputs, targets)

总结:上面的定义方法,将“模块、层、激活函数、损失函数”这些概念统一到了一起,这是pytorch做的比较好的地方(个人意见)

其实在pytorch中,已经有很多的函数是作为类定义好了的,如下:

class _Loss(Module):

@weak_module
class L1Loss(_Loss):

@weak_module
class NLLLoss(_WeightedLoss):

@weak_module
class NLLLoss2d(NLLLoss):

@weak_module
class PoissonNLLLoss(_Loss):

@weak_module
class KLDivLoss(_Loss):

@weak_module
class MSELoss(_Loss):

@weak_module
class BCELoss(_WeightedLoss):

@weak_module
class BCEWithLogitsLoss(_Loss):

@weak_module
class HingeEmbeddingLoss(_Loss):

@weak_module
class MultiLabelMarginLoss(_Loss):
 
@weak_module
class SmoothL1Loss(_Loss):

上面没有列举完全,,,

从上面可以看出,这跟我们自定义的损失函数是如出一辙的,没一个损失函数作为一个类,继承自_Loss类,而_Loss类又继承自Module类,这不正是跟上面的很吻合吗?我们可以来看一下MSELoss的定义,如下:

@weak_module
class MSELoss(_Loss):
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction='mean'):
        super(MSELoss, self).__init__(size_average, reduce, reduction)

    @weak_script_method
    def forward(self, input, target): # 这和我自己的定义是很类似的,只不过是通过nn.functional里面的函数来完成的
        return F.mse_loss(input, target, reduction=self.reduction)

我只需要在自定义的损失函数类里面实现构造函数__init__和forward函数即可。 

比如:

from torch.nn.modules.loss import _Loss

class DiscriminativeLoss(_Loss):

    def __init__(self, delta_var=0.5, delta_dist=1.5,norm=2, alpha=1.0, beta=1.0, gamma=0.001,usegpu=False, size_average=True):
      
    def forward(self, input, target, n_clusters):
     
class HNetLoss(_Loss):

    def __init__(self, gt_pts, transformation_coefficient, name, usegpu=True):

    def forward(self, input, target, n_clusters):
      

2.2 通过nn.functional直接定义函数来完成

前面的定义可以看出,一般情况下,损失函数是没有参数信息和状态需要维护的,所以更多的时候我们没有必要小题大做,自己去定义一个损失函数的类,我们只需要一个计算的数学函数即可,nn.functional里面定义了一些常见的函数,当然也包括一些常见的损失函数,如下:

@weak_script
def smooth_l1_loss(input, target, size_average=None, reduce=None, reduction='mean'):

@weak_script
def l1_loss(input, target, size_average=None, reduce=None, reduction='mean'):

@weak_script
def mse_loss(input, target, size_average=None, reduce=None, reduction='mean'):

@weak_script
def margin_ranking_loss(input1, input2, target, margin=0, size_average=None,
                        reduce=None, reduction='mean'):

@weak_script
def hinge_embedding_loss(input, target, margin=1.0, size_average=None,
                         reduce=None, reduction='mean'):

@weak_script
def multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean'):

@weak_script
def soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean'):

@weak_script
def multilabel_soft_margin_loss(input, target, weight=None, size_average=None,
                                reduce=None, reduction='mean'):
@weak_script
def cosine_embedding_loss(input1, input2, target, margin=0, size_average=None,
                          reduce=None, reduction='mean'):
@weak_script
def multi_margin_loss(input, target, p=1, margin=1., weight=None, size_average=None):

当然这里没有完全列举出来,只是其中的一部分,我们在很多时候只需要使用系统给定的损失函数即可,如果我要自定义一个简单的损失函数,比如我要将 MSE损失添加一个L1正则项,我们就可以这么做了,如下:

loss=F.mse_loss(inputs,targets)+F.l1_loss(inputs,targets)

2.3 完全定义一个自己的损失函数

如果一个损失函数完全是自己定义的,很有可能nn.functional里面没有相关的函数,这个时候我就没办法简单的拼接nn.functional来得到了,事实上,损失函数仅仅是一个函数而已,我可以完全定义一个自己的函数,如下所示:


# 直接定义函数 , 不需要维护参数,梯度等信息
# 注意所有的数学操作需要使用tensor完成。
def my_mse_loss(x, y):
    return torch.mean(torch.pow((x - y), 2))

这其实就是完完全全自己定义的一个函数,当然我还可以通过一个类来包装这个函数。

总结:

损失函数的定义很灵活,可以采用上面三种方式的任意一种,我们可以自定义一个函数、通过nn.functional里面的函数、定义一个类对前两者进行封装

三、通过继承于nn.autograd.Function类来实现损失函数

除了前面的方法,我们还可以通过直接继承自nn.autograd.Function类来实现损失函数,关于nn.autograd.Function的详细说明,我会在后面的文章中再详说,这里就不再展开了。需要注意的是,要想继承nn.autograd.Function类,我们需要

自己实现backward和forward函数,即这个要自己定义实现前向传播和反向传播的计算过程。

四、自定义损失的案例

第一步:本次通过自定义一个损失函数类来实现

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt


# 第一步:自定义损失函数

继承nn.Mdule
class My_loss(nn.Module):
    def __init__(self):
        super().__init__()
        
    def forward(self, x, y):
        return torch.mean(torch.pow((x - y), 2))

第二步:准备数据

# 第二步:准备数据集,模拟一个线性拟合过程
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], 
                    [9.779], [6.182], [7.59], [2.167], [7.042], 
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], 
                    [3.366], [2.596], [2.53], [1.221], [2.827], 
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

# 将numpy数据转化为torch的张量
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)

第三步:构建模型

input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001

# 第三步: 构建模型,构建一个一层的网络模型
model = nn.Linear(input_size, output_size)

# 与模型相关的配置、损失函数、优化方式
# 使用自定义函数,等价于criterion = nn.MSELoss()
criterion = My_loss()

# 定义迭代优化算法, 使用的是随机梯度下降算法
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

第四步:训练模型

loss_history = []
# 第四步:训练模型,迭代训练
for epoch in range(num_epochs):
    #  前向传播计算网络结构的输出结果
    outputs = model(inputs)

    # 计算损失函数
    loss = criterion(outputs, targets)
    
    # 反向传播更新参数,三步策略,归零梯度——>反向传播——>更新参数
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # 打印训练信息和保存loss
    loss_history.append(loss.item()) 
    if (epoch+1) % 5 == 0:
        print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
'''运行结果为:
Epoch [5/60], Loss: 33.1027
Epoch [10/60], Loss: 13.5878
Epoch [15/60], Loss: 5.6819
Epoch [20/60], Loss: 2.4788
Epoch [25/60], Loss: 1.1810
Epoch [30/60], Loss: 0.6551
Epoch [35/60], Loss: 0.4418
Epoch [40/60], Loss: 0.3552
Epoch [45/60], Loss: 0.3199
Epoch [50/60], Loss: 0.3055
Epoch [55/60], Loss: 0.2994
Epoch [60/60], Loss: 0.2968
'''

第五步:结果展示

# 第五步:结果展示。画出原y与x的曲线与网络结构拟合后的曲线
predicted = model(torch.from_numpy(x_train)).detach().numpy() #模型输出结果

plt.plot(x_train, y_train, 'ro', label='Original data')       #原始数据
plt.plot(x_train, predicted, label='Fitted line')             #拟合之后的直线
plt.legend()
plt.show()

# 画loss在迭代过程中的变化情况
plt.plot(loss_history, label='loss for every epoch')
plt.legend()
plt.show()

运行结果为:


 

  • 45
    点赞
  • 254
    收藏
    觉得还不错? 一键收藏
  • 16
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值