365天深度学习训练营-第P1周:实现mnist手写数字识别

一、课题背景和开发环境

📌第P1周:实现mnist手写数字识别📌

  • 难度:小白入门⭐
  • 语言:Python3、Pytorch

🍺 要求:
1.了解Pytorch,并使用Pytorch构建一个深度学习程序
2.了解什么是深度学习

🍻拔高(可选)
1.学习文中提到的函数方法


开发环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.2
  • 深度学习环境:Pytorch
  • 显卡及显存:NVIDIA GeForce GTX 1660 Ti 12G
  • CUDA版本:Release 10.0, V10.0.130(cmd输入nvcc -Vnvcc --version指令可查看)

二、前期准备

1.设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print('device', device)
# device(type='cuda')
device cuda

2.导入数据

使用torchvision.datasets.MNIST下载MNIST数据集,并划分好训练集测试集
若本地已下载过MNIST数据集,则从本地直接读取(通过调整参数download = False实现)

函数原型:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

参数说明:

  • root (string) :数据地址
  • train (string) :True = 训练集,False = 测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在 root 目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
import os

ROOT_FOLDER = 'data'
MNIST_FOLDER = ROOT_FOLDER + '/MNIST'
if not os.path.exists(MNIST_FOLDER) or not os.path.isdir(MNIST_FOLDER):
    print('开始下载数据集')
    # 下载训练集
    train_ds = torchvision.datasets.MNIST(ROOT_FOLDER, 
                                          train=True, 
                                          transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                          download=True)
    # 下载测试集
    test_ds  = torchvision.datasets.MNIST(ROOT_FOLDER, 
                                          train=False, 
                                          transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                          download=True)
else:
    print('数据集已下载 直接读取')
    # 读取已下载的训练集
    train_ds = torchvision.datasets.MNIST(ROOT_FOLDER, 
                                          train=True, 
                                          transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                          download=False)
    # 读取已下载的测试集
    test_ds  = torchvision.datasets.MNIST(ROOT_FOLDER, 
                                          train=False, 
                                          transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                          download=False)

使用torch.utils.data.DataLoader加载数据,并设置batch_size=32

函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)

参数说明:

  • dataset (string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1
  • shuffle (bool,optional) : 如果为True,每个 epoch 重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 lenIterable。 如果指定,则不得指定 shuffle
  • batch_sampler (Sampler or iterable, optional) : 类似于 sampler,但一次返回一批索引。与 batch_sizeshufflesamplerdrop_last 互斥。
  • num_workers (int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载 (默认值:0)
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者 collate_fn 返回一个自定义类型的批次。
  • drop_last (bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。(默认值:False)
  • timeout (numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn (callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id ([0, num_workers - 1] 中的一个 int) 的顺序逐个导入。(默认值:None)
batch_size = 32
# 从 train_ds 加载训练集
train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)
# 从 test_ds 加载测试集
test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
print(imgs.shape)
# torch.Size([32, 1, 28, 28])  # 所有数据集中的图像都是28*28的灰度图
torch.Size([32, 1, 28, 28])

3.数据可视化

import numpy as np

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure('数据可视化', figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
plt.show()

MNIST数据集-数据可视化


三、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

网络层次说明

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

个人的一些理解

  • 大部分情况下卷积层使输入的矩阵层数变深
  • 池化层一般不改变输入的矩阵的层数,但使矩阵的宽度和高度变小
  • 全链接层把输入的矩阵层数整合为单一维度,并使计算后的矩阵大小对应到了数据集的类别数

构建CNN网络

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
    def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.drop1 = nn.Dropout(p=0.15)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2)
        self.drop2 = nn.Dropout(p=0.15)
        
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
    # 前向传播
    def forward(self, x):
        x = self.drop1(self.pool1(F.relu(self.conv1(x))))     
        x = self.drop2(self.pool2(F.relu(self.conv2(x))))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Dropout: 1-3                           --
├─Conv2d: 1-4                            18,496
├─MaxPool2d: 1-5                         --
├─Dropout: 1-6                           --
├─Linear: 1-7                            102,464
├─Linear: 1-8                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================

这里我遇到了BUG,系统报错:No module named 'torchinfo'
pip install torchinfo重新安装就好

总的来讲,这是一个很简单的模型,中间层里有2层的卷积池化,最后再加一个全链接FC层
第一层卷积层的卷积核为1*3*3,卷积核有32个,计算结束后矩阵由原来的1层变为32层,卷积后接着通过ReLU激活函数,再接池化层,池化层核的大小为2*2,计算结束后宽高减半,最后通过Dropout
第二层卷积层的卷积核为32*3*3,卷积核有64个,计算结束后矩阵由原来的32层变为64层,同样卷积后接着通过ReLU激活函数,再接池化层,池化层核的大小为2*2,计算结束后宽高减半,最后通过Dropout
最后全链接层,先通过flatten把多维的矩阵拉成一维,然后依次通过FC1ReLU激活函数,FC2,最后得到一个大小为1*10的结果矩阵

所有的池化层用的都是最大值池化,即每2*2的区域内只取最大的值保留
增加 Dropout层 的目的是防止模型训练过拟合
激活函数用的是 ReLU,目的是增加模型的非线性
R e L U ( x ) = m a x ( 0 , x ) = { x , ( x > 0 ) 0 , ( x < = 0 ) ReLU(x) = max(0, x) = \begin{cases} x, (x>0) \\ 0, (x<=0) \end{cases} ReLU(x)=max(0,x)={x,(x>0)0,(x<=0)


也可以用torch.nn.Sequential将每层的 Conv-ReLU-Pool-Dropout 过程进行整体打包

四、训练模型

1.设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

optimizer.step()

step() 函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意optimizer 只负责通过梯度下降进行优化,而不负责产生梯度,梯度是 tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4.正式训练

model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 50
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:78.0%, Train_loss:0.747, Test_acc:93.4%,Test_loss:0.219
Epoch: 2, Train_acc:93.6%, Train_loss:0.212, Test_acc:96.0%,Test_loss:0.137
Epoch: 3, Train_acc:95.7%, Train_loss:0.139, Test_acc:97.3%,Test_loss:0.089
Epoch: 4, Train_acc:96.5%, Train_loss:0.110, Test_acc:97.7%,Test_loss:0.071
Epoch: 5, Train_acc:97.0%, Train_loss:0.095, Test_acc:98.0%,Test_loss:0.060
Epoch: 6, Train_acc:97.3%, Train_loss:0.085, Test_acc:98.2%,Test_loss:0.057
Epoch: 7, Train_acc:97.6%, Train_loss:0.076, Test_acc:98.3%,Test_loss:0.053
Epoch: 8, Train_acc:97.8%, Train_loss:0.069, Test_acc:98.5%,Test_loss:0.044
Epoch: 9, Train_acc:98.0%, Train_loss:0.062, Test_acc:98.5%,Test_loss:0.046
Epoch:10, Train_acc:98.1%, Train_loss:0.059, Test_acc:98.6%,Test_loss:0.041
Epoch:11, Train_acc:98.3%, Train_loss:0.056, Test_acc:98.8%,Test_loss:0.037
Epoch:12, Train_acc:98.4%, Train_loss:0.053, Test_acc:98.8%,Test_loss:0.036
Epoch:13, Train_acc:98.4%, Train_loss:0.050, Test_acc:98.9%,Test_loss:0.034
Epoch:14, Train_acc:98.5%, Train_loss:0.048, Test_acc:98.9%,Test_loss:0.036
Epoch:15, Train_acc:98.6%, Train_loss:0.045, Test_acc:98.9%,Test_loss:0.033
Epoch:16, Train_acc:98.6%, Train_loss:0.044, Test_acc:99.0%,Test_loss:0.031
Epoch:17, Train_acc:98.7%, Train_loss:0.041, Test_acc:98.9%,Test_loss:0.032
Epoch:18, Train_acc:98.8%, Train_loss:0.039, Test_acc:98.9%,Test_loss:0.031
Epoch:19, Train_acc:98.8%, Train_loss:0.039, Test_acc:99.0%,Test_loss:0.030
Epoch:20, Train_acc:98.8%, Train_loss:0.035, Test_acc:98.9%,Test_loss:0.030
Epoch:21, Train_acc:98.9%, Train_loss:0.036, Test_acc:99.0%,Test_loss:0.029
Epoch:22, Train_acc:98.9%, Train_loss:0.034, Test_acc:99.0%,Test_loss:0.028
Epoch:23, Train_acc:99.0%, Train_loss:0.031, Test_acc:99.1%,Test_loss:0.026
Epoch:24, Train_acc:99.0%, Train_loss:0.031, Test_acc:99.1%,Test_loss:0.026
Epoch:25, Train_acc:99.0%, Train_loss:0.029, Test_acc:99.1%,Test_loss:0.026
Epoch:26, Train_acc:99.1%, Train_loss:0.029, Test_acc:99.1%,Test_loss:0.027
Epoch:27, Train_acc:99.1%, Train_loss:0.027, Test_acc:99.1%,Test_loss:0.025
Epoch:28, Train_acc:99.1%, Train_loss:0.027, Test_acc:99.2%,Test_loss:0.025
Epoch:29, Train_acc:99.2%, Train_loss:0.026, Test_acc:99.1%,Test_loss:0.026
Epoch:30, Train_acc:99.2%, Train_loss:0.026, Test_acc:99.0%,Test_loss:0.026
Epoch:31, Train_acc:99.2%, Train_loss:0.025, Test_acc:99.2%,Test_loss:0.024
Epoch:32, Train_acc:99.3%, Train_loss:0.024, Test_acc:99.2%,Test_loss:0.026
Epoch:33, Train_acc:99.2%, Train_loss:0.023, Test_acc:99.2%,Test_loss:0.024
Epoch:34, Train_acc:99.3%, Train_loss:0.022, Test_acc:99.2%,Test_loss:0.023
Epoch:35, Train_acc:99.3%, Train_loss:0.021, Test_acc:99.2%,Test_loss:0.022
Epoch:36, Train_acc:99.3%, Train_loss:0.021, Test_acc:99.1%,Test_loss:0.027
Epoch:37, Train_acc:99.3%, Train_loss:0.021, Test_acc:99.2%,Test_loss:0.025
Epoch:38, Train_acc:99.4%, Train_loss:0.019, Test_acc:99.2%,Test_loss:0.023
Epoch:39, Train_acc:99.3%, Train_loss:0.020, Test_acc:99.2%,Test_loss:0.024
Epoch:40, Train_acc:99.4%, Train_loss:0.018, Test_acc:99.3%,Test_loss:0.022
Epoch:41, Train_acc:99.4%, Train_loss:0.018, Test_acc:99.2%,Test_loss:0.023
Epoch:42, Train_acc:99.4%, Train_loss:0.018, Test_acc:99.2%,Test_loss:0.023
Epoch:43, Train_acc:99.4%, Train_loss:0.017, Test_acc:99.3%,Test_loss:0.023
Epoch:44, Train_acc:99.4%, Train_loss:0.018, Test_acc:99.2%,Test_loss:0.023
Epoch:45, Train_acc:99.5%, Train_loss:0.017, Test_acc:99.3%,Test_loss:0.023
Epoch:46, Train_acc:99.5%, Train_loss:0.016, Test_acc:99.3%,Test_loss:0.024
Epoch:47, Train_acc:99.5%, Train_loss:0.016, Test_acc:99.3%,Test_loss:0.021
Epoch:48, Train_acc:99.5%, Train_loss:0.016, Test_acc:99.3%,Test_loss:0.024
Epoch:49, Train_acc:99.5%, Train_loss:0.014, Test_acc:99.3%,Test_loss:0.023
Epoch:50, Train_acc:99.5%, Train_loss:0.015, Test_acc:99.2%,Test_loss:0.022
Done

最终结果,训练集准确率达到99.5%,测试集准确率达到99.2%。


五、预测&结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

训练结果可视化


六、模型保存和代码封装

保存当前模型参数

''' 保存模型参数 '''
saveFile = os.path.join(output, 'epoch'+str(epochs)+'.pkl')
torch.save(model.state_dict(), saveFile)

加载之前保存的模型参数

''' 加载之前保存的模型 '''
if not os.path.exists(output) or not os.path.isdir(output):
    os.makedirs(output)
if start_epoch > 0:
    resumeFile = os.path.join(output, 'epoch'+str(start_epoch)+'.pkl')
    if not os.path.exists(resumeFile) or not os.path.isfile(resumeFile):
        start_epoch = 0
    else:
        model.load_state_dict(torch.load(resumeFile))  # 加载模型参数

最后把代码做了函数封装,大概结构如下:

import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchinfo import summary
import matplotlib.pyplot as plt
import numpy as np
import warnings

''' 下载或读取MNIST数据集,并划分好训练集与测试集 '''
def getDataset(root, dataset):
    pass

''' 加载数据,并设置batch_size '''
def loadData(train_ds, test_ds, batch_size=32, root='', show_flag=False):
    pass

''' 数据可视化 '''
def displayData(imgs, root='', flag=False):
    pass

''' 构建简单的CNN网络 '''
class Model(nn.Module):
    pass

''' 训练循环 '''
def train(dataloader, model, loss_fn, optimizer):
    pass

''' 测试函数 '''
def test(dataloader, model, loss_fn):
    pass

''' 结果可视化 '''
def displayResult(train_acc, test_acc, train_loss, test_loss, start_epoch, epochs, output=''):
    pass

if __name__=='__main__':
    ''' 设置图片的类别数 '''
    num_classes = 10
    ''' 设置GPU '''
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print('Device', device, '\n')
    
    ''' 加载数据 '''
    root = 'data'
    output = 'output'
    dataset = os.path.join(root, 'MNIST')
    batch_size = 32
    train_ds, test_ds = getDataset(root, dataset)
    train_dl, test_dl = loadData(train_ds, test_ds, batch_size, dataset, False)
    
    ''' 调用并将模型转移到GPU中(我们模型运行均在GPU中进行) '''
    model = Model().to(device)
    ''' 显示网络结构 '''
    summary(model)
    
    ''' 设置超参数 '''
    start_epoch = 10
    epochs      = 15
    learn_rate  = 1e-2  # 学习率
    loss_fn     = nn.CrossEntropyLoss()  # 创建损失函数
    opt         = torch.optim.SGD(model.parameters(),lr=learn_rate)
    train_loss  = []
    train_acc   = []
    test_loss   = []
    test_acc    = []
    
    
    ''' 加载之前保存的模型 '''
    if not os.path.exists(output) or not os.path.isdir(output):
        os.makedirs(output)
    if start_epoch > 0:
        resumeFile = os.path.join(output, 'epoch'+str(start_epoch)+'.pkl')
        if not os.path.exists(resumeFile) or not os.path.isfile(resumeFile):
            start_epoch = 0
        else:
            model.load_state_dict(torch.load(resumeFile))  # 加载模型参数
    
    ''' 开始训练模型 '''
    print('\nStart training...')
    for epoch in range(start_epoch, epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(time.strftime('[%Y-%m-%d %H:%M:%S]'), template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    print('Done\n')
    
    ''' 保存模型参数 '''
    saveFile = os.path.join(output, 'epoch'+str(epochs)+'.pkl')
    torch.save(model.state_dict(), saveFile)
    
    ''' 绘制准确率&损失率曲线图 '''
    displayResult(train_acc, test_acc, train_loss, test_loss, start_epoch, epochs, output)


七、总结

总体来讲,这是个比较简单的课题,代码量不大,但是完整的展现了如何实现一个图像分类目标的项目过程和框架。

目前了解到的内容:

  • CNN网络基本框架的搭建分为特征提取层和分类层,特征提取层为 卷积-激活-池化-Dropout,分类层为两层 全连接层。最后还要添加 反向传播
  • ReLU 的公式
    R e L U ( x ) = m a x ( 0 , x ) = { x , ( x > 0 ) 0 , ( x < = 0 ) ReLU(x) = max(0, x) = \begin{cases} x, (x>0) \\ 0, (x<=0) \end{cases} ReLU(x)=max(0,x)={x,(x>0)0,(x<=0)
  • pytorch 框架下的一些基本函数操作
  • 简单 CNN网络 的创建和修改
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值