摄像机模型

模型

[ X Y Z 1 ] ↦ [ f m x s m x p x f m y m y p y 1 ] R [ I ∣ − C ~ ] [ X Y Z 1 ] = K R [ I ∣ − C ~ ] [ X Y Z 1 ] = P [ X Y Z 1 ] \begin{bmatrix}X\\Y\\Z \\1 \end{bmatrix} \mapsto \begin{bmatrix} fm_x & s & m_xp_x \\ & fm_y & m_yp_y \\ & & 1 \\ \end{bmatrix} R [I|-\tilde C]\begin{bmatrix}X\\Y\\Z \\1 \end{bmatrix}=KR[I|-\tilde C]\begin{bmatrix}X\\Y\\Z \\1 \end{bmatrix}=P\begin{bmatrix}X\\Y\\Z \\1 \end{bmatrix} XYZ1fmxsfmymxpxmypy1R[IC~]XYZ1=KR[IC~]XYZ1=PXYZ1
其中, f f f是焦距,单位是世界长度, m x m_x mx是单位世界长度在 x x x方向的像素个数, s s s是扭曲参数,一般为0, p x p_x px是主点的坐标,单位是世界长度。 R R R是世界坐标系和摄像机坐标系之间的旋转关系, C ~ \tilde C C~是摄像机坐标系原点在世界坐标系中的坐标

  • 采用齐次坐标的几个好处:把点和超平面采用同样的表示,任何有关“点”与“平面”的命题,都可以交换“点”与“平面”的概念,得到一个对偶的命题;齐次坐标能囊括无穷远点与无穷远超平面;齐次坐标可以方便地将平移与旋转放在一个矩阵中。出处

  • 世界坐标系和摄像机坐标系下坐标的转换
    X c a m = [ R − R C ~ 0 T 1 ] [ X Y Z 1 ] X_{cam}=\begin{bmatrix}R&-R\tilde C\\0^T&1 \end{bmatrix}\begin{bmatrix}X\\Y\\Z \\1 \end{bmatrix} Xcam=[R0TRC~1]XYZ1

  • 自由度:5+3+3=11个

  • t = − R C ~ t=-R\tilde C t=RC~的物理意义是:It is the position of the origin of the world coordinate system expressed in coordinates of the camera-centred coordinate system. 推导:把世界坐标系平移到相机坐标系的原点产生一个新的坐标系,这个坐标系下,世界原点的坐标是 − C ~ -\tilde C C~。转换到相机坐标系下的坐标为 t = − R C ~ t=-R\tilde C t=RC~

  • 有限射影摄像机矩阵与左边为非奇异的3×3子矩阵的3×4齐次矩阵 P = M [ I ∣ M − 1 p 4 ] P=M[I|M^{-1}p_4] P=M[IM1p4]等同。一般射影摄像机矩阵的秩是3。 P P P的秩是1,则 P X PX PX的值域可以表示为 k ( x , y , z ) T k(x,y,z)^T k(x,y,z)T,它是一个点。 P P P的秩是2,则 P X PX PX的值域可以表示为 k ( x , y , z ) T + k 2 ( x 2 , y 2 , z 2 ) T k(x,y,z)^T+k2(x2,y2,z2)^T k(x,y,z)T+k2(x2,y2,z2)T,它是一条直线。

有限摄像机
  • 摄像机中心 C C C P P P的一维零空间 P C = 0 PC=0 PC=0。有限摄像机 C = [ − M p 4 1 ] C=\begin{bmatrix}-Mp_4\\1 \end{bmatrix} C=[Mp41],无穷远摄像机 C = [ d 0 ] , M d = 0 C=\begin{bmatrix}d\\0 \end{bmatrix}, Md=0 C=[d0],Md=0。证明是根据直线 C A CA CA的投影和 A A A的投影相同

  • 列矢量: p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3分别是 X , Y , Z X,Y,Z X,Y,Z轴的消影点

  • 行矢量: P 3 T P^{3T} P3T是摄像机主平面, P 1 T P^{1T} P1T的平面由 C C C和图像中 x = 0 x=0 x=0直线来确定, P 2 T P^{2T} P2T的平面由 C C C和图像中 y = 0 y=0 y=0直线来确定

  • 主点: P [ p 31 p 32 p 33 0 ] = M m 3 , m 3 T 是 M 的 第 3 行 P\begin{bmatrix}p_{31}\\p_{32}\\p_{33}\\0 \end{bmatrix}=Mm^3, m^{3T}是M的第3行 Pp31p32p330=Mm3,m3TM3

  • 主轴矢量: v = d e t ( M ) m 3 v=det(M)m^3 v=det(M)m3是在主轴方向上指向摄像机前方的矢量

  • 点到射线的反向投影: X ( λ ) = P + x + λ C ,    P + = P T ( P P T ) − 1 X(\lambda)=P^+x+\lambda C,\ \ P^+=P^T(PP^T)^{-1} X(λ)=P+x+λC  P+=PT(PPT)1
    有 限 摄 像 机 还 有 : X ( μ ) = μ [ M − 1 0 ] + [ − M − 1 p 4 1 ] 有限摄像机还有 : X(\mu)=\mu \begin{bmatrix}M^{-1}\\0 \end{bmatrix}+\begin{bmatrix}-M^{-1}p_4\\1 \end{bmatrix} X(μ)=μ[M10]+[M1p41]

  • 点的深度,令 X = ( X , Y , Z , T ) T X=(X,Y,Z,T)^T X=(X,Y,Z,T)T是一个3D点而 P = [ M ∣ p 4 ] P=[M|p_4] P=[Mp4]是一个有限摄像机的摄像机矩阵,假定 P ( X , Y , Z , T ) T = w ( x , y , 1 ) T P(X,Y,Z,T)^T=w(x,y,1)^T P(X,Y,Z,T)T=w(x,y,1)T。那么 d e p t h ( X ; P ) = s i g n ( d e t ( M ) ) w T ∣ ∣ m 3 ∣ ∣ depth(X;P)=\frac {sign(det(M))w}{T||m^3||} depth(X;P)=Tm3sign(det(M))w是在摄像机主平面前方的点X的深度

  • P = [ M ∣ − M C ~ ] = K [ R ∣ − R C ~ ] P=[M|-M\tilde C]=K[R|-R\tilde C] P=[MMC~]=K[RRC~]的分解,对 M M M进行 R Q RQ RQ分解

  • 坐标定向:图像坐标 y y y方向一般沿向下方向,此时仍为右手坐标系,则 z z z方向沿主平面之后。
    (1)可以把 y y y坐标取负
    (2)不改变,则求出的 R R R是右手系到左手系的旋转。之前的主轴方向表示会变化(相反),点的深度因为 d e t ( R ) = − 1 det(R)=-1 det(R)=1而为负数

无穷远摄像机
  • 仿射摄像机最一般的形式
    P A = [ m 11 m 12 m 13 t 1 m 21 m 22 m 23 t 2 0 0 0 1 ] , 限 制 是 秩 是 3 P_A=\begin{bmatrix}m_{11}&m_{12}&m_{13}&t_1\\m_{21}&m_{22}&m_{23}&t_2\\0&0&0&1 \end{bmatrix},限制是秩是3 PA=m11m210m12m220m13m230t1t213

它是不断增加相机距物体的距离同时增加焦距,取极限的情况。


P ∞ P_∞ P仿射近似 P 0 P_0 P0,而不等于 P 0 P_0 P0是因为存在景深。逼近效果要好,应该满足
(1)深度的起伏相对于平均深度要小
(2)图像点到主轴的距离较近
所以,长焦距镜头视场和景深较小,更容易满足这些条件

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值