第三届智能科学国际会议ICIS2018征稿北京大学11月2日-5日召开。附史忠植院士简历(公号发“智能科学国际会议”下载PDF)

第三届智能科学国际会议ICIS2018征稿北京大学11月2日-5日召开。附史忠植院士简历(公号发“智能科学国际会议”下载PDF)

原创: 秦陇纪 数据简化DataSimp 今天

数据简化DataSimp导读:第三届智能科学国际会议ICIS2018征稿,将于2018年112-5日在北京大学召开。(附大会联合程序主席之一史忠植院士简历)数据简化社区获准转发中英文对照版,欢迎向该会议投稿。

目录

第三届智能科学国际会议ICIS2018征稿,北京大学112-5日召开。附史忠植院士简历(11139)

01第三届智能科学国际会议ICIS2018征稿 (1090)

02 Call for Papers to The Third International Conferenceon Intelligence Science (ICIS2018) (834)

Topics of Interest:Important Deadlines:Paper Submission:

04中国科学院史忠植院士简历 (9088)

0 计算技术研究所简历

1 人物简介(▪介绍研究领域荣誉著作)

2 主要经历3 研究方向4 科研项目

5 科研成果6 研究生课程7 获奖情况

8 人才培养9 论文论著(▪学术论著学术论文)

参考文献(150)Appx(626).数据简化DataSimp社区简介

 

01第三届智能科学国际会议ICIS2018征稿 (1090)

第三届智能科学国际会议ICIS2018征文通知

|ICIS2018,智能科学国际会议2018ICIS20182018112-5日,中国北京

官方网站:http://www.intsci.ac.cn/icis2018/

第三届智能科学国际大会(ICIS)将于2018112日至5日在中国北京举办。此次会议由中国人工智能学会(CAAI)、国际信息研究学会中国分会主办;北京大学承办;北京市科学技术协会(SAST)支持;共同协办。

近年来,我们对人工智能的研究在一些特定的领域已经取得了许多可喜的研究成果。然而,目前对人工智能领域更深入的研究还远远不够,许多最先进的人工智能系统仍然无法达到人类智力的水准。为了对人工智能展开进一步的探索,现在亟需在跨学科的背景下,同时展开对人工智能和自然智能的研究。本次会议的目标是共同探讨智能和相关的科学技术,与会学者的研究领域包括了脑科学、认知学以及人工智能;会议旨在为学者们提供一个智能科学领域探索与交流的平台。

主办单位

中国人工智能学会 (CAAI)

国际信息研究学会中国分会

承办单位

北京大学

协办单位

北京市人工智能学会 (SAAI)

支持单位

北京市科学技术协会(BAST)

指导委员会

北大校领导(郝平书记或林建华校长或王博副校长)

李德毅中国人工智能学会理事长(院士)

林建祥北京大学

李衍达清华大学(院士)

张钹清华大学(院士)

陆汝钤中国科学院

高文北京大学(院士)

张光鉴中国思维科学学会荣誉会长(筹)

大会主席

钟义信北京邮电大学

Jay McClelland斯坦福大学,美国

何新贵北京大学

程序主席

史忠植中国科学院计算技术研究所

Cyriel Pennartz 荷兰阿姆斯特丹大学

黄铁军北京大学

程序委员会

会议主题:

ICIS2018的主题:智能科学与信息科学

会议主题包括但不限于以下领域:

l  脑神经活动的基本过程

l  记忆的编码与检索

l  学习和突触可塑性

l  思想与决策

l  智力的发展与适应

l  思维模型

l  脑机融合

l  仿生智能

l  大数据分析

l  思维科学

l  心智哲学

l  感知的本质

l  高级学习

l  人工智能逻辑理论

l  因素空间理论

l  感知表示与特征绑定

l  语言认知

l  探测和主动采样

l  情感与感情

l  意识的性质

l  认知计算

l  智能机器人

l  神经形态计算

l  智能信息处理

l  混合智能

l  认知机制

l  进化

l  人工智能数理理论

l  智能教育

重要日期:

论文提交截止时间:2018625

通知接受时间:2018710

截稿版本时间:2018810

论文提交:

作者通过“Easychair system”http://easychair.org/conferences/?conf=icis2018)来提交论文。论文要求:英文撰写;双栏10点,pdf格式;完整论文不超过6页;短论文或问题实例最多3页;状态说明1页。本次会议接受的论文将在会议上演讲,并将出版会议论文集(正与IEEE数字图书馆进行协商)。

专题论坛(Workshop

智能教育

医学人工智能黄智生

如欲获取更多详细信息,可通过以下网址查看:

http://www.intsci.ac.cn/icis2018/

组织委员会

组织主席

马尽文北京大学jwma@math.pku.edu.cn

秘书长

罗定生北京大学dsluo@pku.edu.cn

副秘书长

邹晓辉中美塞尔研究中心949309225@qq.com

接待主管

张树义 zzssyy@math.pku.edu.cn

(其余略)


02 Call for Papers to The Third International Conference on IntelligenceScience (ICIS2018) (834)

CallforPapers

http://www.intsci.ac.cn/icis2018

Sponsors

Chinese Association for ArtificialIntelligence (CAAI)

China Chapter under International Societyfor Information Studies

Organizers

Peking University

Co-Supports

Beijing Association for Science andTechnology (BAST)

Shanghai Association for Science andTechnology (SAST)

Beijing Association for ArtificialIntelligence (BAAI) CIE Signal Processing Society

Steeringcommittee

Peking University LeaderDeyi Li, President of CAAi

Jianxian Lin, PekingUniversityYanda Li, TsinghuaUniversityBo Zhang, TsinghuaUniversity

Ruqian Lu, Chinese AcademyofSciences Wen Gao, PekingUniversity

Guangjian Zhang, ChineseAssociationfor Noetic Science(inPreparation)

Generalchairs

The Third International Conferenceon Intelligence Science (ICIS2018) will be held in Beijing, China, on November2-5, 2018, focusing on Intelligence Science, Information Science. It issponsored by Chinese Association for Artificial Intelligence (CAAI), ChinaChapter of International Society for Information Studies; Organizer is PekingUniversity; and Co-supported by Beijing Association for Science and Technology(BAST), Beijing Association for Artificial Intelligence (BAAI).

Artificial Intelligenceresearch has made certain substantial progress in some special areas so far.However, the deeper understandings on the essence of intelligence are far fromsufficient and, therefore, many state-of-the-art intelligent systems are stillnot able to compete with human intelligence. To advance the research inartificial intelligence, it is necessary to investigate intelligence, bothartificial and natural, in an interdisciplinary context. The objective of thisconference is to bring together researchers from brain science, cognitivescience, and artificial intelligence to explore the essence of intelligence andthe related technologies. The conference provides a platform for discussingsome of the key issues that are related to intelligence science.

The main theme ofICIS2018 is: Intelligence Science, Information Science

Topics of Interest:

The topics of interestinclude, but not limited to, thefollowing:

Yixin Zhong, BeijingUniversity of Posts and Telecommunications

Jay McClelland, StanfordUniversity, USA Xingui He, Peking University

ProgramCommittee Chairs

Zhongzhi Shi, ChineseAcademy of Sciences Cyriel Pennartz U, Amsterdam, Netherlands Tiejun Huang,Peking University

Workshops

Intelligent EducationChairsWansen Wang, HongguangFu, Shimin Meng

Noetic science ChairsJialiFeng, Xiaofeng Wang Language cognition ChairsZhiweiFeng, Houfeng Wang, Xiaohui Zou

Artificial Intelligencein Medicine MM Chairs Zhisheng Huang,Jianfeng Feng

Statistical Leaning forIntelligent Information Processing ChairsJinwen Ma, Yatong ZhouPhase theorem ChairsChuan Zhao

OrganizingChairs

Jinwen Ma, PekingUniversityEmail:jwma@math.pku.edu.cn

SecretaryGeneral

Dingsheng Luo, PekingUniversity Email:dsluo@pku.edu.cn

Basic process of neuralactivity in brain Perceptual representation and feature binding Coding andretrieval of memory

Linguistic cognitionAdvanced Learning

Thought and decisionmaking Emotion and affection

Developmentand adaptation of intelligence Nature of consciousness

Mindmodeling Cognitive computing

Brain-machineintegration Intelligent robots and animal robots Brain-like intelligence

Important Deadlines:

Special session proposal:    May25, 2018

Paper submission deadline:        June 1, 2018

Notification of acceptance:July 10, 2018

Camera-ready version:         August10, 2018

Paper Submission:

The main theme of ICIS2018 is: Intelligence Science,Information Science

It is sponsored by Chinese Association for ArtificialIntelligence (CAAI), China Chapter of International Society for InformationStudies; Organizer is Peking University; and Co-supported by BeijingAssociation for Science and Technology (BAST), Beijing Association forArtificial Intelligence (BAAI).

Topics of Interest:

Topics of interest include but not limited to, thefollowing areas:

*Basic process of neural activity in brain *Evolution

*Perceptualrepresentation and feature binding *Cognitivestructure

*Coding and retrieval of memory *Learning and synapticplasticity

*Exploration and active sampling *Thought and decisionmaking

*Emotion and affection *Nature of consciousness

*Development and adaptation of intelligence *Mindmodeling

*Cognitive computing *Brain-machine integration

*Intelligent robots and animal robots *Brain-likeintelligence

*Neuromorphic computing *Big data analytics

*Intelligent information processing *Meta SyntheticWisdom

*Mind philosophy *Hybrid intelligence

*Essence of perception *Mechanism of cognition

*Advanced learning *Linguistic cognition

*Logic theory for AI *Mathematical theory for AI

*Factor Space Theory *Intelligent education

Vice Secretary General

Xiaohui Zou, Sino-American Saerle Research Center

Email:949309225@qq.com

Local Arrangement Chair

Shuyi Zhang, Peking University Email:zzssyy@math.pku.edu.cn

Finance Chair

Wenhui Cui, Peking UniversityEmail:cuiwenhui@math.pku.edu.cn

Publication Chair

Tian Liu, Peking University Email:lt@pku.edu.cn

Publicity Chair

Yongzhi Cao, Peking University Email:caoyz@pku.edu.cn Zhicheng Chen, Beijing Grid Tech. Email:czc0910@163.com

International Liaison

Kedian Mu, Peking UniversityEmail:mukedian@math.pku.edu.cn

Papers should be no longer than 10 pages including alltables, figures, and references but excluding a cover page. Submissions shouldbe in the Springer LNCS format.

Each submission must include one cover page which shouldcontain:

Title of the paper with an abstract of no more than 250words;

A few keywords, from the list above where possible,giving a clear indication of topics;

Author names with affiliations, complete postaladdresses, and phone numbers;

Email address of the contact author.

The proceedings will be published by the Springer. Pleaseclick here to get the detailed paperformat. All papers should be submitted electronically (preferably in PDF) viathe Easychair paper system http://easychair.org/conferences/submission_show_all.cgi?a=17656950.

or through the ICIS2018 website (http://www.intsci.ac.cn/icis2018/)

All accepted papers will be indexed by EI and Inspec.

More information and detailed instructions can be foundon the conference website at: http://www.intsci.ac.cn/icis2018/.

 

03中国科学院史忠植院士简历 (9088)

史忠植,中国科学院计算技术研究所研究员,IFIP人工智能专业委员会机器学习和数据挖掘组主席,IEEE高级会员,AAAI会员,博士生指导教师,长期从事智能科学、认知科学等方面的研究工作。中文名:史忠植,外文名:ShiZhongzhi,国籍:中国,民族:汉,出生日期:19419月,职业:研究员,毕业院校:中国科学技术大学,主要成就:国家科技进步二等奖,代表作品:《知识工程》。

http://www.intsci.ac.cn/shizz/

史忠植研究员

研究员

中国科学院智能科学实验室

中国科学院计算技术研究所

534室,科学院南路6号,中关村

P.O.Box 2704,北京100190

电话: (010)82610254,82522201(h)

传真: (010) 82610254

Email: shizz@ict.ac.cn;ady.shi@qq.com


0 计算技术研究所简历

中国科学院计算技术研究所研究员。IFIP 人工智能专业委员会机器学习和数据挖掘组主席, IEEE高级会员,AAAI、ACM会员。博士生指导教师。

1964年毕业于中国科技大学计算机专业。1968年毕业于中国科学院研究生院。 1980年9月至1983年4月作为访问学者赴美国学习研究。1989年8月至1990年5月作为访问教授赴荷兰、挪威讲学研究。1994年5月 2000年6月中国科技大学研究生院系主任(兼职)、教授;1999.10 1999.11 新加坡国立大学,访问教授;2005年3月-2005年5月 澳大利亚南澳大学,访问教授;2007年3月-2007年4月 澳大利亚南澳大学,访问教授。曾多次赴加拿大、新加坡、香港讲学。

曾负责多项973项目、国家重点科技攻关项目、国家863高技术的智能计算机系统项目、 国家自然科学基金等项目。 长期从事智能科学、知识工程、分布式人工智能、机器学习、神经计算、认知科学等方面的研究工作。1979年获中国科学院科技进步二等奖。1994年获中国科学院科技进步特等奖。1998年获中国科学院科技进步二等奖。 2001年获中国科学院科技进步二等奖。2002年获国家科技进步二等奖。发表著作12本。编辑出版书和会议录14本。 发表学术论文400多篇。已培养博士40多名、硕士100多名。

积极开展国内外学术交流活动。曾多次担任国际学术会议程序委员、程序委员会主席。被选为国际人工智能联合会(IJCAI)1997年咨询委员会委员、 国际信息处理联合会(IFIP)人工智能技术委员会(TC12)委员、中国人工智能学会副理事长。 Web Semantics、Informatics、计算机学报、计算机研究与发展等杂志的编委。

1 人物简介(▪介绍研究领域荣誉著作)

介绍

史忠植积极开展国内外学术交流活动。曾多次担任国际学术会议程序委员、程序委员会主席。被选为国际人工智能联合会(IJCAI1997年咨询委员会委员、国际信息处理联合会IFIP)人工智能技术委员会(TC12)委员、中国人工智能学会副理事长。Web SemanticsInformatics计算机学报、计算机研究与发展、电子学报等杂志的编委。

3 史忠植

研究领域

史忠植长期从事智能科学知识工程、分布智能、机器学习、神经计算、认知科学等方面的研究工作。曾负责完成多项国家重点科技攻关项目、国家863高技术的智能计算机系统项目、国家自然科学基金等项目。他发展了较完整的智能主体(agent)理论和技术,是我国该领域研究的开拓者之一。在知识工程研究方面取得了具有创造性和系统性的研究成果,积极倡导智能科学的研究,从机理上探索人类自然智能的本质,在人工智能研究中注入新的活力。

荣誉

1979 年获中国科学院科技进步二等奖。

1994 年获中国科学院科技进步特等奖。

1998 年获中国科学院科技进步二等奖。

2001 年获中国科学院科技进步二等奖。

2002 年获国家科技进步二等奖。

著作

发表著作11本。20世纪80年代撰写《知识工程》,推动我国人工智能、知识工程的研究。撰写了《智能科学》一书,开创智能科学研究的新局面。编辑出版书12本。发表学术论文350多篇。

2 主要经历

1964年毕业于中国科学技术大学计算机专业。

1968年毕业于中国科学院研究生院。

19809月至19834月作为访问学者赴美国学习研究。

19898月至19905月作为访问教授赴荷兰、挪威讲学研究。

2004年赴澳大利亚合作研究。曾多次赴加拿大、新加坡、香港讲学。

3 研究方向

一、智能主体

本方向要针对我国软件产业发展的需要,从建立分布式智能和分布式应用系统集成的目标出发,在理论创新的基础上,发展公共主体请求代理体系机制CARBA,研究面向主体软件工程方法,开发具有自主版权的目标产品多主体环境MAGE”。主要研究内容包括:

1)理性主体的认知模型和多主体的协调策略;

2)面向主体的软件工程方法;

3)主体技术实用化研究方面。

该方向主要应用领域包括:电子商务,数字图书馆,移动计算,群体智能决策支持系统,以及CSCW

二、机器学习

主要研究内容包括:

1)学习算法:归纳学习、范例学习、贝叶斯网路、粗糙集、模糊集、支持向量机、关联规则、遗传算法、解释学习

2)开展感知学习、主动学习和内省学习;

3)多策略通用数据挖掘工具MSMiner

三、语义网格和知识网格

语义网格和知识网格是在异构的、动态的虚拟组织环境下,提供有效的知识服务和共享,通过自治计算(Autonomic Element)、协作解决用户需要解决的问题,满足用户的需求。主要研究内容包括:

知识模型。知识模型将描述系统的知识和推理需求,包括领域知识、推理知识和任务知识。

通信模型。通信模型将描述系统之间或系统与用户之间的需求和接口。

知识获取。研究适合高维、海量、异构、不完全、半结构化数据挖掘的有效方法和算法。

知识组织。研究通过概念语义空间进行知识组织,以期获得快速检索和高的查准率。

服务管理。面向用户服务的模式和协议。

四、自主计算

IT系统拥有自我调节能力而无需人为的过多干预呢,这就是自主计算的思想——将复杂性嵌入到系统设施本身,使用户觉察不到复杂性,只需发号施令而不必关心系统执行命令的具体过程。这意味着,系统本身能够自主运行,并自我调整以适应不同的环境。自主计算即得名于人体的自主神经系统,但它们的重要差异在于,人体做出的很多自主决定是不自觉的,而计算机系统的自主计算组件则遵循人所下达的命令。自主计算也不同于人工智能,虽然后者在某些方面对其有借鉴意义。自主计算并不将模仿人类思维作为主要目标,而是具有适应动态变化环境自我管理能力。主要研究内容包括:

自我配置。使PC可以在无人参与的情况下自动安装应用程序,可用于包括IBM或其他品牌PC的混合环境;系统移植助理则通过保存用户的设置,使用户特殊的数据、应用以及个人设置从旧系统向新系统转移时更容易。

自我恢复。它能使PC用户快速、轻松地实现文件数据乃至应用程序和操作系统本身的恢复。

自我优化。软件可以让用户轻易地在多种有线或无线的网络中切换,而不必操心网络连接时的设置变更过程。

自我保护。利用系统集成的安全芯片和客户安全软件,提供了同时基于软硬件的保护措施。

五、认知信息学

1 神经计算

侧重研究神经网络变换、神经场计算理论、信念神经网络模型的学习理论、基于前馈动力学神经网络的联想记忆模型、基于遗传算法的神经网络算法、神经近似逻辑、思维模型等。取得的研究成果如下:

提出了以指数函数为隐单元激发函数的指数神经网络模型。

研究了变换神经网络的竞争学习问题,提出了适应频率竞争学习算法,推广了K--中心聚类算法,从而部分地解决了全局等概率性问题。

提出了神经场计算的理论框架,用平坦流形上单形、复形的概念和理论来作为神经网络模型结构的表示和编码机理,通过复形结构的边缘链结构分解,形成了对于神经网络层次化,功能模块化的组织结构、定位机理的认识。

提出了在非线性空间和非欧氏空间中基于整体结构逼近的学习理论框架,在此基础上分别提出了对偶校正学习算法(DCL)和基于拓扑结构逼近校正学习算法(TAC)。

提出了一种神经近似逻辑,该逻辑能很好地描述神经网络。神经近似逻辑不仅具有模糊的逻辑值,而且逻辑运算符也是模糊的。

连接专家系统。

2 学习的认知机理

3 环境认知

六、信息检索

基于内容的图象信息检索系统MIRES

智能搜索引擎GHunt

4 科研项目

科研项目

史忠植研究员领导的智能科学实验室主要从事智能科学的基础性和应用基础性研究,包括智能主体、机器学习、神经计算、认知科学等,以及与人工智能有关的应用技术与系统的研究,主要有知识工程、智能决策系统、多媒体信息检索等, 探索智能科学、智能信息处理发展的新概念、新理论、新方法。这些研究方向既体现了国际同类研究的前沿,反映智能科学发展的方向,又能结合我国信息科学技术的进步和国民经济发展的需要,具有十分重要的理论价值和应用前景。

1. 基于感知学习和语言认知的智能计算模型研究

本项目是国家自然科学基金重点项目,将借鉴脑科学和神经科学的最新研究成果,开展跨学科的共同研究,从感知学习和语言认知机理入手,探讨智能计算的新理论和新方法;针对特定的使用环境,提出融合视觉、听觉智能信息处理的人机交互新方法。除理论成果之外,还研制体现新方法的演示系统。

2. 非结构化信息的内容理解与语义表征

本项目是国家重点基础研究发展计划973课题。本课题研究的主要任务是为图像与视频非结构化信息的内容理解与语义表征提供创新的理论与方法。主要研究图像与视频信息的语义提取、推理、特征整合方法,并实际应用于多媒体智能检索与视觉监控。

图像与视频是最主要的一类非结构化信息,它包含了丰富的语义信息。图像的智能信息处理,包括分析图像中的关键内容,特别是解决从图像中对目标(人物、车辆)的检测、识别和理解,是非结构化信息处理中极具挑战的研究课题,对于国家安全和经济发展有着极其广泛而重要的作用。

3. 语义网格资源描述模型、形式化理论和支撑技术

本项目是国家重点基础研究发展计划973课题。本课题主要研究语义网的逻辑基础、本体匹配方法、主体网格及分布式数据挖掘和面向网格的复杂网络建模等。

4. 软件自治愈与自恢复技术

本项目是国家高技术863项目。网构软件是一种在互联网开放、动态和多变环境下的软件系统,保证系统的可靠性、可信性以及系统的可维护性和有效性,是一个非常重要的问题,必须研究网构软件的可信计算问题。本课题将充分运用人工智能的最新成果,特别是主体技术、自治计算、机器学习的方法,建立网构软件的可信建模理论,研究软件自治愈技术和自恢复技术,开发具有自治管理功能的自治管理器原型系统。本项研究成果将能提高网构软件的可信计算水平,也可以广泛用于通用的软件系统或设备,在国防、能源、金融、生物制药、工程仿真、农业经济、航天航空、情报等领域,提高现代信息服务业的可靠性和可用性。

5. 语义Web服务的逻辑基础

本项目是国家自然科学基金面上项目。本项目将研究语义Web服务的逻辑基础,结合描述逻辑、动态逻辑、以及动作理论中的相关成分,构建扩展的动态描述逻辑。在动态描述逻辑的基础上,进一步引入时序逻辑以及逻辑程序设计等成分,为语义Web服务的描述、推理、发现、组合等功能提供充分的逻辑支撑。与此同时,本项目将开发基于该动态描述逻辑及其扩展形式的推理机,通过推理机实现相关的各种推理能力。进一步将推理机与本体知识管理等结合,实现语义Web服务演示系统。

6. 网络智能化及与语义Web相关的基础理论与关键技术研究

本项目是国家自然科学基金重点项目。开展以语义Web为基础的理论与关键技术研究,在Internet上提供智能型的服务与应用。研究内容包括网络智能化及与语义Web相关的基础理论与关键技术、网络服务的基础理论、网络信息集成方法与技术、网络重大应用(如电子政务、电子商务等)的基础理论与关键技术。

5 科研成果

科研成果

中国科学院计算技术研究所智能信息处理重点实验室智能科学课题组自成立以来,在史忠植研究员的领导下,开拓进取,勇于探索,在人工智能、知识工程、认知科学等领域内取得了令人瞩目的成绩,开发了下列智能软件工具。

·      主体网格智能平台AGrIP

·      多主体环境MAGE

·      数据挖掘工具MSMiner

·      智能决策支持系统IDSS

·      多媒体信息检索系统MIRES

·      智能搜索引擎GHunt详细介绍(PPT格式)

·      专家系统工具OKPS详细介绍(PPT格式)

·      海洋渔业资源预报系统Fisher详细介绍(PPT格式)

·      基于主体的电子商务系统详细介绍(PPT格式)

·      智能决策系统开发平台IDSDP

·      网络信息智能获取与处理系统GHunt

·      模型库管理系统MBMS

·      约束推理工具COPS

·      范例推理工具CBRS

·      神经专家系统工具ONESS

6 研究生课程

研究生教学课件

·史忠植: 高级人工智能

·史忠植: 智能科学

·史忠植: 高级计算机网络

·史忠植: 数据挖掘

·史忠植:人工智能

·史忠植:神经网路

7 获奖情况

11979年获中国科学院科技进步二等奖。

21994年获中国科学院科技进步特等奖。

31998年获中国科学院科技进步二等奖。

42001年获中国科学院科技进步二等奖。

52002年获国家科技进步二等奖。

8 人才培养

人才培养

史忠植研究员指导在读研究生

博士后

周菁

  

博士研究生

姜广

张博

田东平

岳金朋

张建华

齐保元

硕士研究生

孙晗晓(客座)

  

史忠植研究员指导已出站博士后

田启家博士后

何清博士后

Nicolas Bredeche 博士后

梁吉业博士后

郑金华博士后

丁世飞博士后

蒙祖强博士后

窦全胜博士后

崔志华博士后

赵晓非博士后

  

史忠植研究员指导已毕业研究生

廖乐健博士

吴斌博士

万华林博士

陆明亮博士(客座)

 

王学重博士(客座)

吕翠英博士(客座)

王宽敬博士(客座)

周涵博士(客座)

 

李威博士

叶世伟博士

张建博士

莫纯欢博士

 

李云峰博士

张颍博士

王文杰博士

王军博士

 

廖冬一博士

王鲁明博士

张大川博士

刘承杰博士

 

刘继敏博士

王伟博士

梁永全博士

潘谦红博士

 

李晓黎博士

焦文品博士

曹虎博士

叶施仁博士

 

刘少辉博士

武成岗博士

宫秀军博士

董明楷博士

 

贾自艳博士

赵志崑博士

蒋运承博士

盛秋戬博士

 

施智平博士

张海俊博士

黄友平博士

程勇博士

 

江涛博士

李宁辉博士

李清勇博士

郑征博士

 

常亮博士

黄河博士

邱莉榕博士

 王茂光博士

 

曾立

罗杰文博士

黄瑞博士

石志伟博士

 

罗平博士

彭晖博士

谭力

林芬博士

 

张冬蕾博士

张素兰博士

张志勇博士

石川博士

 

李志清博士

万长林博士

张大鹏博士

王竹晓博士

 

陈立民博士

牛温佳博士

李志欣博士

马慧芳博士博士

 

韩旭博士

刘曦博士

杨鲲博士

郭立君博士(客座)

 

王晓峰博士

杨来博士

   

胡宏硕士

王雅丽硕士

杨志成硕士

韦帷硕士

 

方健梅硕士

许志平硕士

宫昭宇硕士

刘郁陶硕士

 

胡小华硕士

马海波硕士

韩建操硕士

许金喜硕士

 

李宝东硕士

吴建明硕士

朱建立硕士

徐众惠硕士

 

Matthijs硕士

陈源硕士

张丽华硕士

王纪华硕士

 

史春奇硕士

季强硕士

谭宁硕士

王泊硕士

 

钟石强硕士

任立安硕士

李源硕士

肖春艳硕士

 

郑毅硕士

王鹰翔硕士

麻和平硕士

罗代洪硕士

 

刘变兰硕士

沈逊硕士

唐辉硕士

王寒流硕士

 

宋一丁硕士

王良硕士

王彤硕士

张景明硕士

 

王炬硕士

张治洪硕士

杨振宇硕士

张旭硕士

 

张庆杰硕士

赵璇硕士

赵钢硕士

赵辉硕士

 

周石光硕士

赵若斌硕士

谭琼硕士

陆枫硕士

 

李爽硕士

任立安硕士

李源硕士

张宁硕士

 

郑毅硕士

傅伟鹏硕士

姜宁硕士

庄涛硕士

 

李蓉硕士

韩吉硕士

王嘉硕士

高翔硕士

 

周勇硕士

辛志硕士

何潇潇硕士

杨柳硕士

 

汪涛硕士

王华伟硕士

唐胡鑫硕士

何建斌硕士

 

黄慧靖 硕士

谭浩硕士

董泽坤硕士

刘缵敏硕士

 

孙永硕士

贾颖杰硕士

张子云硕士

曹鹏硕士

 

林欢欢硕士(客座)

叶飞硕士

张颖硕士(客座)

陈坤荣硕士

 

董琪硕士

杨兴华硕士(客座)

王喜顺硕士(客座)

马刚硕士(客座)

 

胡斌教授(西部之光)

郝继升教授(西部之光)

苏变萍(进修)

彭志平(进修)

 

9 论文论著(▪学术论著学术论文)

学术论著

1. 史忠植.智能科学 . 清华大学出版社,2005.

2. 史忠植.知识工程 . 清华大学出版社,1988.

3. 史忠植.C 语言程序设计. 北京出版社,1986.

4. 史忠植,余志华. 认知科学和计算机.科普出版社, 1990.

5. 史忠植.高级人工智能. 科学出版社, 1998.

6. 史忠植.神经计算. 电子工业出版社.1993.

7. 史忠植.智能主体及其应用. 科学出版社,2000.

8. 史忠植.知识发现. 清华大学出版社,2001.

9. 史忠植.高级计算机网络. 电子工业出版社.2001.

10. Zhongzhi Shi. Principles ofMachine Learning. International Academic Publishers (in English), 1992.

学术论文

1. Zhongzhi Shi, Mingkai Dong,Yuncheng Jiang, Haijun Zhang. A Logic Foundation for the Semantic Web. Sciencein China, Series F Information Sciences, 48(2):161-178, 2005

2. Zhongzhi Shi, Youping Huang,Qing He, Lida Xu, Shaohui Liu, Liangxi Qin, Ziyan Jia, Jiayou Li. MSMiner-ADeveloping Platform for OLAP. Decision Support Systems, to appear.

3. Zhongzhi Shi. Autonomic SemanticGrid. Keynote speaker. IFIP AIAI2005, Sept., 7-9, 2005

4. Zhongzhi Shi. Tolerence RelationBased Granular Computing Model. Invited Speaker, IEEE ICGrC 2005

5. Zhongzhi Shi, Qingyong Li, ZhengZheng. Visual Perceptual Learning. Invited Speaker, in Proc. IEEE InternationalConference on Neural Network & Brain, 75-80. Beijing, China, 2005.

6. Zhongzhi Shi, Sulan Zhang.Case-based Introspective Learning. ICCI2005, 43-48

7. Zhongzhi Shi, Fen Lin, Qing Yu,Jiewen Luo. MAGE: Multiagent Environment for Humanized Systems. ISHS2005

8. Jiang Yuncheng, Shi Zhongzhi,Zhang Haijun and Dong Mingkai. Dynamic Service Matchmaking in Intelligent Web.Journal of Web Engineering. 2004, 2(3): 131-147.

9. Zhongzhi Shi, Shaohui Liu, ZhengZheng. Efficient Attribute Reduction Algorithm. AIAI2004, 211-222

10. Zhongzhi Shi, Ping Luo, YaleiHao, Guohe Li, Markus Stumptner, Qing He and Gerald Quirchmayr. INTELLIGENTTECHNOLOGY FOR WELL LOGGING ANALYSIS. IIP2004, 373-382

11. Zhongzhi Shi, Youping Huang,Jian Zhang: Neural Field Model for Perceptual Learning. IEEE ICCI 2004: 192-198

12. Zhongzhi Shi, Qing He, ZiyanJia and Jiayou Li. Intelligence Chinese Document Semantic Indexing System.International Journal of Information Technology and Decision MakingVol.2,No.3, 2003407-424.

13. Zhongzhi Shi, Haijun Zhang,Mingkai Dong, MAGE: Multi-Agent Environment, ICCNMC-03, IEEE CS Press,pp.181-188 2003

14. Zhongzhi Shi, Perspectives OnCognitive Informatics, IEEE ICCI"03, 2003: 129-136

15. Zhongzhi Shi, Mingkai Dong,Haijun Zhang, Qiujian Sheng. Agent-based Grid Computing.Keynote Speech,International Symposium on Distributed Computing and Applications to Business,Engineering and Science, Wuxi, Dec. 16-20, 2002

16. Zhongzhi Shi. MSMiner: APlatform for Data Mining.eynote Speech, International Conference on MachineLearning and Cybernetics, Beijing, Nov. 4-5, 2002

17. Zhongzhi Shi, Bin Wu, Qing He,Xiujun Gong, Shaohui Liu, Yi Zheng. IDSIS: Intelligent Document SemanticIndexing System.The 17th IFIP World Computer Congress, Montreal, August, 2002

18. Zhongzhi Shi, Qing He, ShiqiangZhong and Bo Wang. AGECOP----Agent-based Electronic Commerce Platform.nvitedspeech at the seminar on New Advances of Information Technology, Macao, 2001

19. Zhongzhi Shi, Bin Wu. AClustering Algorithm Based on Swarm Intelligence. Invited talk, The 1stSino-Japan Workshop on Metasynthesis and Complex System, Beijing, 2001

20. Zhongzhi Shi, Wenpin Jiao,Qiujian Sheng. Agent-Oriented Software Methodology.CEEMAS2001, Cracow,Poland,2001

21. Zhongzhi Shi. Agent-basedE-commerce. Invited Speaker, DS-9, Hong Kong, 2001

22. Zhongzhi Shi, Wenpin Jiao BoWang. A Composition Model for Distributed Systems.ICCS2001, 590-94, 2001

23. Shi Zhongzhi, Zhang Jian, LiuJianmin. 1998. Topology Approximation Correction Approach--A Learning Mechanismof Neural Field Theory. ICNN&B’98, Beijing

24. Zhongzhi Shi, Hu Cao, YunfengLi, Wenjie Wang, Tao Jiang, A Building Tool for Multiagent Systems: AOSDE. IT\& Knows, IFIP WCC "98, 1998

25. Zhongzhi Shi, Zhang Jian, LiuJimin, Neural Field Theory-A Framework of neural Information Processing NeuralNetwork and Brain Proceedings, 1998, 421-424

26. Zhongzhi Shi, Yunfeng Li, Hu Cao,AOSDE: Agent-Oriented Software Developing Environment, ICMAS"98, 1998.

著作与论文集

国际出版

1. Zhongzhi Shi. IntelligenceScience.WorldScientific Publishing Co.2012.

2. Zhongzhi Shi. AdvacedArtificial Intelligence.World Scientific Publishing Co.2011.

3. Zhongzhi Shi, Sunil Vadera, Agnar Aamodt, David B. Leake: Intelligent InformationProcessing V - 6th IFIP TC 12 International Conference, IIP 2010, Manchester,UK, October 13-16, 2010. Proceedings Springer 2010

4. Zhongzhi Shi, E.Mercier-Laurent, D. Leake. (Eds.) IntelligentInformation Processing Ⅳ(IIP2008),Springer, 2008.

5. Zhongzhi Shi, K. Shimohara, D.Feng (Eds.), IntelligentInformation Processing III (IIP2006), Springer, 2006.

著作与论文集

国际出版

1. Zhongzhi Shi. IntelligenceScience.WorldScientific Publishing Co.2012.

2. Zhongzhi Shi. AdvacedArtificial Intelligence.World Scientific Publishing Co.2011.

3. Zhongzhi Shi, Sunil Vadera, Agnar Aamodt, David B. Leake: Intelligent InformationProcessing V - 6th IFIP TC 12 International Conference, IIP 2010, Manchester,UK, October 13-16, 2010. Proceedings Springer 2010

4. Zhongzhi Shi, E.Mercier-Laurent, D. Leake. (Eds.) IntelligentInformation Processing Ⅳ(IIP2008),Springer, 2008.

5. Zhongzhi Shi, K. Shimohara, D.Feng (Eds.), IntelligentInformation Processing III (IIP2006), Springer, 2006.

6. Zhong-zhi Shi, RamakotiSadananda (Eds.), AgentComputing and Multi-Agent Systems, LNAI 4088,

Springer, 2006.

7. Riichiro Mizuguchi, ZhongzhiShi, Fausto Giunchiglia (Eds.), TheSemantic Web-ASWC 2006, LNCS 4185,

Springer, 2006.

8. Yiyu Yao, Zhongzhi Shi, YingxuWang, Witold Kinsner (Eds.), CognitiveInformatics(ICCI 2006), IEEE

Computer Society, 2006.

9. Mingsheng Zhao, Zhongzhi Shi(Eds.), Proceedingsof 2005 International Conference on Neural Networks

andBrain(ICNN&B 2005), IEEE Press, 2005.

10. Zhongzhi Shi, Qing He (Eds.), IntelligentInformation Processing II (IIP 2004), Springer, 2004.

11. Zhongzhi Shi, Qing He (Eds.), Proceedingsof International Conference on Intelligent Information

Processing, 2002.

12. Zhong Y.X., Zhongzhi Shi, HuiLi (Eds.), Proceedingsof International Conference on Info-Tech and Info-Net, 2001.

13. Zhongzhi Shi, Boi Faltings,Mark Musen (Eds.), Proceedingsof Conference on Intelligent Information3

Processing, 2000.

14. Zhongzhi Shi (Ed.), Proceedings of Pacific Rim InternationalConference on Artificial Intelligence,

International Academic Publishers,(in English), 1994.

15. Harry Bunt, Zhongzhi Shi(Eds.), International Workshop on KnowledgeEngineering and Applications,

1994.

16. Zhongzhi Shi. Principles of Machine Learning. International Academic Publishers(in English), 1992.

17. Zhongzhi Shi (Ed.), Automated Reasoning (in English), IFIP TransactionsA-19, North-Holland, 1992.

18. Meersman, R. A., Zhongzhi Shi,Chen-Ho Kung (Eds.), Artificial Intelligence inDatabases and Information

Systems(DS-3), North-Holland Publishers (in English), 1990.

19. Yungui Ci, JiafuXu, L.O. Hertzberger, Zhongzhi Shi (Eds.), New Generation Computer Systems,

International AcademicPublishers (in English), 1989.

20. Zhongzhi Shi, Principles of Machine Learning, Lecture Notes, EUR(in English), 1989.

21. S. Bing Yao,Shixuan Sa, Zhongzhi Shi (Eds.), Proceedings of PRE-VIDB'86, Beijing (in English),1986.

国内出版

1. 史忠植. 心智计算.清华大学出版社, 2015

2. 史忠植. 知识发现(第二版).清华大学出版社, 2011.

3. 史忠植. 神经网络.高等教育出版社,2009.

4. 史忠植. 认知科学.中国科技大学出版社,2008.

5. 史忠植. 高级人工智能(第三版). 科学出版社, 2011. 4.

6. 史忠植. 人工智能. 国防工业出版社, 2007.

7. 史忠植. 高级人工智能(第二版). 科学出版社, 2006.

8. 史忠植. 能科学. 清华大学出版社, 2013 20068忠植学出版社, 2006.

9. 史忠植. 知识发现. 清华大学出版社, 2001.清华大学出版社, 2001.

10.史忠植. 高级计算机网络. 电子工业出版社,2001. .电子工业出版社. 2001.

11. 史忠植. 智能主体及其应用,科学出版社.

12. 史忠植. 高级人工智能..科学出版社, 1998科学出版社,1998.

13. 史忠植. 神经计算。电子工业出版社,1993..电子工业出版社.1993.

14. 史忠植. 知识工程. 清华大学出版社, 19888..清华大学出版社,1988.

15. 史忠植. C 语言程序设计.北京出版社,1986.

16. 史忠植, 余志华. 认知科学和计算机. 科普出版社, 1990.

17. 史忠植. 数据库技术.中科院计算所, 1984.

18. 史忠植等. 智能决策系统.中科院计算所, 1991.

19. 史忠植等. 知识库系统. 中科院计算所, 1991.

20. Zhongzhi Shi, Neural Computing,Graduate School, University of Science and Technology of China

(in English), 1991.

21. 戴汝为, 史忠植 (Eds.), 人工智能和智能计算机. 电子工业出版社, 1991.

22. 史忠植,怀进鹏,田启家. 人工智能进展. 清华大学出版社,2001.

23. 史忠植等. Micro-PROLOG 分析报告. 中科院计算所,1986.

24. 史忠植. UNIX 操作系统. 中科院计算所 1983.

翻译出版

1. 史忠植,梁永全, 吴斌等译.知识工程和知识管理(GuusSchreiber: Knowledge Engineering and Management) . 机械工业出版社,2003.

2. 史忠植,张银奎, 赵志崑等译.人工智能-复杂问题求解的结构和策略(GeorgeE Luger: Artificial

Intelligence) . 机械工业出版社,2003.

3. 叶世伟,史忠植译. 神经网络原理(Simon Haykin: Neural Networks) . 机械工业出版社,2004.

学术论文

2000- 2017

2017

InternationalJournal

 Gang Ma, Xi Yang, Bo Zhang,Zhongzhi Shi. Multi-feature fusion deep networks. Neurocomputing, 218(2016)164–171.

 Dongping Tian, Zhongzhi Shi:Automatic image annotation based on Gaussian mixture model consideringcross-modal correlations. J. Visual Communication and Image Representation 44:50-60 (2017)

 Shifei Ding, Nan Zhang, JianZhang, Xinzheng Xu, Zhongzhi Shi: Unsupervised extreme learning machine withrepresentational features. Int. J. Machine Learning & Cybernetics 8(2):587-595 (2017)

InternationalConference

 Zhongzhi Shi. MachineConsciousness Architecture in CAM. the twenty-first Annual Meeting for theAssociation for the Scientific Study of Consciousness (ASSC21), 2017.

 Zhongzhi Shi, Gang Ma, JianqingLi. Machine Consciousness of Mind Model CAM. The 12th International Conferenceon Knowledge Management in Organizations, 16-26, Springer, 2017.

 Gang Ma, Zhentao Tang, Xi Yang,Zhongzhi Shi, Kun Yang. Visual Scenes Mining for Agent Awareness Module. LNAI10357, Industrial Conference on Data Mining 2017, Neu York, 166-180, 2017.

 Zhongzhi Shi, Gang Ma, JianqingLi. Collaborative Model in Brain-Computer Integration. Intelligence Science Ⅰ, 20-31, Springer2017.

ChinaJournal

张博,郝杰, 马刚,史忠植. 基于弱匹配概率典型相关性分析的图像自动标注[J]. 软件学报, 28 (2): 292-309, 2017

王述,史忠植.基于深度典型相关性分析的跨媒体语义检索. 中国科学技术大学学报,2017

ChinaConference

史忠植. 人工智能应用及其展望. 特邀报告, 民航新技术应用与创新高级研讨班(第六届), 2017

史忠植. 学无止境. 特邀报告, 首都师范大学, 2017.

2016

InternationalJournal

 Gang Ma, Xi Yang, Bo Zhang,Zhongzhi Shi. Multi-feature fusion deep networks. Neurocomputing, 218(2016)164–171.

 Zhaohui Wu, Yongdi Zhou, ZhongzhiShi, Changshui Zhang, Guanglin Li, Xiaoxiang Zheng, Nenggan Zheng, Gang Pan:Cyborg Intelligence: Recent Progress and Future Directions. IEEE IntelligentSystems 31(6): 44-50 (2016)

Hong Hu, Liang Pang, ZhongzhiShi.Image matting in the perception granular deep learning. Knowle dge-Base d Systems,  102 (2016) 51–63

 Jian Zhang, Shifei Ding, NanZhang, Zhongzhi Shi. Incremental extreme learning machine based on deep featureembedded. Int. J. Mach. Learn. & Cyber. (2016) 7:111–120

 Nan Zhang, Shifei Ding, ZhongzhiShi. Denoising Laplacian multi-layer extreme learning machine. Neurocomputing171(2016)1066–1074

 Shifei Ding, Zhongzhi Shi,Dacheng Tao, Bo An: Recent advances in Support Vector Machines. Neurocomputing211: 1-3 (2016)

 Zuqiang Meng, Zhongzhi Shi: Onquick attribute reduction in decision-theoretic rough set models. Inf. Sci.330: 226-244 (2016)

 Zuqiang Meng, Qiuling Gan,Zhongzhi Shi: On efficient methods of computing attribute-value blocks inincomplete decision systems. Knowl.-Based Syst. 113: 171-185 (2016)

InternationalConference

 Zhongzhi Shi, Sunil Vadera, GangLi. Intelligent Information Processing Ⅷ - 9th IFIP TC 12 InternationalConference, IIP 2016, Melbourne, Australia, October 18-21, 2016, Proceedings

 Zhongzhi Shi. Brain-likeComputing. Invited Speaker. Intelligent Information Processing Ⅷ, 2016

 Zhongzhi Shi, Gang Ma, Shu Wang,Jianqing Li. Brain-Machine Collaboration for Cyborg Intelligence, IntelligentInformation Processing Ⅷ,98-107,Springer, 2016.

 Zhongzhi Shi. CBDMECloud-BasedBig Data Mining Engine. Invited speaker, The University of New South Wales,Canberra, Australia, 2016.11.25

 Zhongzhi Shi. CognitiveComputing. Invited speaker, The University of New South Wales, Canberra,Australia, 2016.11.29

 Bo Zhang, Gang Ma, Xi Yang, ZhongzhiShi, Jie Hao: Automatic Image Annotation Based on Semi-supervised ProbabilisticCCA. Intelligent Information Processing 2016: 211-221

 Quansheng Dou, Zhongzhi Shi,Yuehao Pan: Noisy Control About Discrete Liner Consensus Protocol. IntelligentInformation Processing 2016: 235-244

ChinaJournal

史忠植.突破通过机器进行学习的极限[J]. 科学通报,61 (33): 3548~556, 2016

孙志远,鲁成祥,史忠植,马刚.深度学习研究与进展. 计算机科学,43(2): 1-8, 2016

ChinaConference

史忠植. 类脑计算与智能科学. 特邀报告, 中国矿业大学, 2016.5.

史忠植. 司马贺的人工智能创新之路. 特邀报告, 中国人工智能学会,H. A. Simon学术思想研讨会, 2016.6.16

史忠植. 探寻大师足迹一览马文·明斯基的学术风采. 特邀报告,中国人工智能学会,明斯基学术思想研讨沙龙, 2016. 7.27

史忠植. 认知机器学习. 特邀报告, 中国科协第113期新观点新学说学术沙龙, 2016.9.24

史忠植. 人工智能:信息技术高端化的必由之路. 特邀报告, 574次香山科学会议-“发展人工智能,引领科技创新”, 2016.10.25-26

2015

InternationalJournal

 Zhongzhi Shi, Gang Ma, Xi Yang,Chengxiang Lu. Motivation Learning in Mind Model CAM. International Journal ofIntelligence Science, 5(2): 63-71, 2015.

Jie Lu, Zheng Zheng, GuangquanZhang, Qing He, Zhongzhi Shi.A new solution algorithm for solving rule-sets based bilevel decisionproblems. Concurrency andComputation: Practice and Experience 27(4):830-854 (2015)

 Qing He, Haocheng Wang, FuzhenZhuang, Tianfeng Shang, Zhongzhi Shi. Parallel sampling from big data withuncertainty distribution. Fuzzy Sets and Systems 258: 117-133 (2015)

 Wenchao Yu, Fuzhen Zhuang, QingHe, Zhongzhi Shi. Learning deep representations via extreme learning machines.Neurocomputing 149: 308-315 (2015)

 Wenjuan Luo, Fuzhen Zhuang,Weizhong Zhao, Qing He, Zhongzhi Shi. QPLSA: Utilizing quad-tuples for aspectidentification and rating. Inf. Process. Manage. 51(1): 25-41 (2015)

InternationalConference

 Zhongzhi Shi. CAM is a GeneralFramework of Brain-Like Computing. Invited Speaker. 1st World Congress ofRobotics 2015 (WCR-2015), Shenyang, 2015

 Zhongzhi Shi, Jinpeng Yue, GangMa, and Xi Yang. CCF-Based Awareness in Agent Model ABGP. Tharam Dillon.Artificial Intelligence in Theory and Practice Ⅳ, 98-107, Springer, 2015,

 Changying Du, Shandian Zhe,Fuzhen Zhuang, Yuan Qi, Qing He and Zhongzhi Shi. Bayesian Maximum MarginPrincipal Component Analysis. AAAI-15, Austin, USA, 2015

 Gang MaXiYang, Bo Zhang, Baoyuan Qi, Zhongzhi Shi. An Environment Visual AwarenessApproach in Cognitive Model ABGP. 27th IEEE International Conference on Toolswith Artificial Intelligence, 2015, November: 744-751

ChinaJournal

张博,史忠植,赵晓非,张建华.一种基于跨领域典型相关性分析的迁移学习方法[J]. 计算机学报,38 (7): 1326~1336, 2015

马刚,杜宇鸽,安波,张博,王伟,史忠植. 基于威胁传播采样的复杂信息系统风险评估. 计算机研究与发展,52(7): 1642-1659, 2015

张博,郝杰, 马刚,岳金朋, 张建华,史忠植. 混合概率典型相关性分析.计算机研究与发展, 52(7): 1463-1476, 2015

ChinaConference

史忠植. 类脑计算. 特邀报告. 首都师范大学, 2015

词条标签:行业人物,科研人员,人物。

词条统计:浏览22753次,编辑11历史版本,最近更新:2017-12-28,创建者:wdg98

附:知名中国学者

-END-

 

参考文献(150)

1. ICIS2018.第三届智能科学国际会议征文通知.[EB/OL] http://www.intsci.ac.cn/icis2018/2018-05-22

2. 中国科学院计算技术研究所.史忠植研究员.[EB/OL] http://www.intsci.ac.cn/shizz/2017-12-00

3. 百度百科.史忠植.[EB/OL] https://baike.baidu.com/item/史忠植/62517972017-12-28

x.秦陇纪.数据科学与大数据技术专业概论;人工智能研究现状及教育应用;纯文本数据神经网络训练;大数据简化之技术体系[EB/OL].数据简化DataSimp(微信公众号)http://www.datasimp.org2017-06-06

第三届智能科学国际会议ICIS2018征稿,北京大学112-5日召开。附史忠植院士简历(11139)

秦陇纪

简介:第三届智能科学国际会议ICIS2018征稿,北京大学112-5日召开。(公号回复智能科学国际会议,文末阅读原文可下载5431k15PDF) 蓝色链接数据简化DataSimp关注后下方菜单项有文章分类页,欢迎转发、赞赏支持社区。作者ICIS2018来源:智能科学国际会议ICIS2018官方网站www.intsci.ac.cn/icis2018授权、数据简化社区微信群聊公众号,引文出处请看参考文献。主编译者:秦陇纪,数据简化社区、科学Sciences、知识简化新媒体创立者,数据简化OS设计师、C/Java/Python/Prolog程序员,IT教师。版权声明:科普文章仅供学习研究,公开资料©版权归原作者,请勿用于商业非法目的。秦陇纪2018数据简化DataSimp综合汇译编,投稿合作,或出处有误、侵权、错误或疏漏(包括原文错误)等,请联系DataSimp@126.com沟通、指正、授权、删除等。欢迎转发数据简化DataSimp科学Sciences知识简化新媒体聚集专业领域一线研究员;研究技术时也传播知识、专业视角解释和普及科学现象和原理,展现自然社会生活之科学面。秦陇纪发起未覆盖各领域,期待您参与~~ 强烈谴责超市银行、学校医院、政府公司肆意收集、滥用、倒卖公民姓名、身份证号手机号、单位家庭住址、生物信息等隐私数据!


Appx(626).数据简化DataSimp社区简介

信息社会之数据、信息、知识、理论持续累积,远超个人认知学习的时间、精力和能力。应对大数据时代的数据爆炸、信息爆炸、知识爆炸,解决之道重在数据简化(Data Simplification)简化减少知识、媒体、社交数据使信息、数据、知识越来越简单,符合人与设备的负荷。数据简化2018年会议(DS2018)聚焦数据简化技术(Data Simplification techniques)对各类数据从采集、处理、存储、阅读、分析、逻辑、形式等方ose 做简化,应用于信息及数据系统、知识工程、各类数据库、物理空间表征、生物医学数据,数学统计、自然语言处理、机器学习技术、人工智能等领域。欢迎投稿数据科学技术、简化实例相关论文提交电子版(最好有PDF格式)。填写申请表加入数据简化DataSimp社区成员,应至少一篇数据智能、编程开发IT文章:①高质量原创或翻译美欧数据科技论文;②社区网站义工或完善S圈型黑白静态和三彩色动态社区LOGO图标论文投稿、加入数据简化社区,详情访问www.datasimp.org社区网站,网站维护请投会员邮箱DataSimp@163.com。请关注公众号数据简化DataSimp”留言,或加微信QinlongGEcai(备注:姓名/单位-职务/学校-专业/手机号),免费加入投稿群科学Sciences学术文献读者微信群等。长按下图识别图中二维码关注三个公众号(搜名称也行,关注后底部菜单有文章分类页链接):

数据技术公众号数据简化DataSimp

科普公众号科学Sciences”

社会教育知识公众号知识简化

(转载请写出处:©秦陇纪2010-2018汇译编,欢迎技术、传媒伙伴投稿、加入数据简化社区!数据简化DataSimp科学Sciences知识简化投稿反馈邮箱DataSimp@126.com。)

普及科学知识,分享朋友圈

转发/留言/打赏后阅读原文下载PDF

微信扫一扫
关注该公众号

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页