麻省理工MIT大神解说数学体系;2012年计算机博士港中大林达华简历(公号回复“MIT林达华”下载彩标PDF论文)

麻省理工MIT大神解说数学体系;2012年计算机博士港中大林达华简历(公号回复“MIT林达华”下载彩标PDF论文)

原创: 林达华 数据简化DataSimp 今天

数据简化DataSimp导读:林达华是MIT计算机科学博士,读研时以贝叶斯非参建模斩获顶会NIPS2010年最佳学生论文奖、ICCV2009和2011杰出评审员奖,现任香港中文大学教授。本文介绍其科学学习经验,约写于2011年10月,转发科学网等被大量传播至今。附林达华简介。祝大家学习愉快~ 关注本公号“数据简化DataSimp”后,在输入栏回复“MIT林达华”可获取下载链接。数据简化DataSimp社区分享:信息与数据处理分析、数据科学研究前沿、数据资源现状和数据简化基础的科学知识、技术应用、产业活动、人物机构等信息。欢迎大家参与投稿,为数据科学技术做贡献,使国人尽快提高数据能力,提高社会信息流通效率。要推进人类文明,不可止步于敲门呐喊;设计空想太多,无法实现或虚度一生;工程能力至关重要,秦陇纪与君共勉之。

麻省理工MIT大神解说数学体系;2012年计算机博士港中大林达华简历(22800字)

目录

 

A麻省理工MIT大神解说数学体系(10370字)

一、为什么要深入数学的世界

二、集合论:现代数学的共同基础

三、分析:在极限基础上建立的宏伟大厦

四、代数:一个抽象的世界

五、分析与代数的结合

B MIT计算机Dr林达华简历(1985字)

1 人物简介

2 学术研究(▪研究领域▪主要成就)

参考文献(977字)Appx(845字).数据简化DataSimp社区简介


A麻省理工MIT大神解说数学体系(10370)

麻省理工牛人眼中的数学体系

文|林达华2011-10-10Mon,整理|秦陇纪,数据简化DataSimp-20181105Mon

目录

1. 为什么要深入数学的世界

2. 集合论:现代数学的共同基础

3. 分析:在极限基础上建立的宏伟大厦

3.1 微积分:分析的古典时代——从牛顿到柯西

3.2 实分析:在实数理论和测度理论上建立起现代分析

3.2.1 现代概率论:在现代分析基础上再生

3.3 拓扑学:分析从实数轴推广到一般空间——现代分析的抽象基础

3.4 微分几何:流形上的分析——在拓扑空间上引入微分结构

4. 代数:一个抽象的世界

4.1 关于抽象代数

4.2 线性代数:“线性”的基础地位

4.2.1 泛函分析:从有限维向无限维迈进

4.2.2 继续往前:巴拿赫代数,调和分析,和李代数

5. 分析与代数结合

原文:http://www.penglixun.com/study/science/mit_math_system

每门学科都应该学习完成后,在脑子里面有一个体系,比如物理体系、化学体系、数学体系等等。我们学习一门课程的收获,不是期末考试能考多少分,能拿多少奖学金,能获得高GPA,而是要真正建立起这个学科的体系,为未来的深入学习或者研究打基础、做准备。

以下是牛人的数学体系:

在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。

 

一、为什么要深入数学的世界

作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appearance和motion建立一个unified的model。这个题目在当今ComputerVision中百花齐放的世界中并没有任何特别的地方。事实上,使用各种GraphicalModel把各种东西联合在一起framework,在近年的论文中并不少见。

我不否认现在广泛流行的Graphical Model是对复杂现象建模的有力工具,但是,我认为它不是panacea,并不能取代对于所研究的问题的深入的钻研。如果统计学习包治百病,那么很多“下游”的学科也就没有存在的必要了。事实上,开始的时候,我也是和Vision中很多人一样,想着去做一个GraphicalModel——我的导师指出,这样的做法只是重复一些标准的流程,并没有很大的价值。经过很长时间的反复,另外一个路径慢慢被确立下来——我们相信,一个图像是通过大量“原子”的某种空间分布构成的,原子群的运动形成了动态的可视过程。微观意义下的单个原子运动,和宏观意义下的整体分布的变换存在着深刻的联系——这需要我们去发掘。

在深入探索这个题目的过程中,遇到了很多很多的问题,如何描述一个一般的运动过程,如何建立一个稳定并且广泛适用的原子表达,如何刻画微观运动和宏观分布变换的联系,还有很多。在这个过程中,我发现了两个事情:

·我原有的数学基础已经远远不能适应我对这些问题的深入研究。

·在数学中,有很多思想和工具,是非常适合解决这些问题的,只是没有被很多的应用科学的研究者重视。

于是,我决心开始深入数学这个浩瀚大海,希望在我再次走出来的时候,我已经有了更强大的武器去面对这些问题的挑战。

我的游历并没有结束,我的视野相比于这个博大精深的世界的依旧显得非常狭窄。在这里,我只是说说,在我的眼中,数学如何一步步从初级向高级发展,更高级别的数学对于具体应用究竟有何好处。

 

二、集合论:现代数学的共同基础

现代数学有数不清的分支,但是,它们都有一个共同的基础——集合论——因为它,数学这个庞大的家族有个共同的语言。集合论中有一些最基本的概念:集合(set)、关系(relation)、函数(function)、等价(equivalence),是在其它数学分支的语言中几乎必然存在的。对于这些简单概念的理解,是进一步学些别的数学的基础。我相信,理工科大学生对于这些都不会陌生。

不过,有一个很重要的东西就不见得那么家喻户晓了——那就是选择公理”(Axiom of Choice)。这个公理的意思是“任意的一群非空集合,一定可以从每个集合中各拿出一个元素。”——似乎是显然得不能再显然的命题。不过,这个貌似平常的公理却能演绎出一些比较奇怪的结论,比如巴拿赫-塔斯基分球定理——“一个球,能分成五个部分,对它们进行一系列刚性变换(平移旋转)后,能组合成两个一样大小的球”。

正因为这些完全有悖常识的结论,导致数学界曾经在相当长时间里对于是否接受它有着激烈争论。现在,主流数学家对于它应该是基本接受的,因为很多数学分支的重要定理都依赖于它。在我们后面要回说到的学科里面,下面的定理依赖于选择公理:

·拓扑学:Baire CategoryTheorem (译注1:外类别定理)

·实分析(测度理论):Lebesgue不可测集的存在性

·泛函分析四个主要定理:Hahn-BanachExtension Theorem, Banach-Steinhaus Theorem (Uniform boundedness principle),Open Mapping Theorem, Closed Graph Theorem (译注2:Hahn-Banach扩张定理,Banach-Steinhaus定理(均匀有界原理),开映射定理,闭图定理)

在集合论的基础上,现代数学有两大家族:分析(Analysis)和代数(Algebra)至于其它的,比如几何和概率论,在古典数学时代,它们是和代数并列的,但是它们的现代版本则基本是建立在分析或者代数的基础上,因此从现代意义说,它们和分析与代数并不是平行的关系。

 

三、分析:在极限基础上建立的宏伟大厦

3.1 微积分:分析的古典时代——从牛顿到柯西

先说说分析(Analysis)吧,它是从微积分(Caculus)发展起来的——这也是有些微积分教材名字叫“数学分析”的原因。不过,分析的范畴远不只是这些,我们在大学一年级学习的微积分只能算是对古典分析的入门。分析研

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大林算法(Dantzig-Wolfe algorithm,简称D-W算法)是一种线性规划求解算法,它是将原问题转化为一系列子问题的形式进行求解。下面给出一个基于matlab的大林算法实例: 假设我们要求解如下线性规划问题: $$ \begin{aligned} &\max z = 5x_1 + 4x_2\\ &s.t.\\ &x_1 - x_2 \leq 1\\ &2x_1 + x_2 \leq 5\\ &x_1, x_2 \geq 0 \end{aligned} $$ 首先,我们将原问题转化为标准形式: $$ \begin{aligned} &\max z = 5x_1 + 4x_2 + 0s_1 + 0s_2\\ &s.t.\\ &x_1 - x_2 + s_1 = 1\\ &2x_1 + x_2 + s_2 = 5\\ &x_1, x_2, s_1, s_2 \geq 0 \end{aligned} $$ 然后,我们将其转化为矩阵形式: $$ \begin{aligned} &\max z = \mathbf{c}^T\mathbf{x}\\ &s.t.\\ &A\mathbf{x}=\mathbf{b}\\ &\mathbf{x} \geq \mathbf{0} \end{aligned} $$ 其中, $$ \mathbf{c}=\begin{bmatrix} 5\\ 4\\ 0\\ 0 \end{bmatrix} $$ $$ A=\begin{bmatrix} 1 & -1 & 1 & 0\\ 2 & 1 & 0 & 1 \end{bmatrix} $$ $$ \mathbf{b}=\begin{bmatrix} 1\\ 5 \end{bmatrix} $$ 接下来,我们可以使用matlab的linprog函数求解该线性规划问题: ```matlab c = [5;4;0;0]; A = [1 -1 1 0;2 1 0 1]; b = [1;5]; [x,fval,exitflag,output,lambda] = linprog(c,[],[],A,b,zeros(4,1)); ``` 其中,x为最优解向量,fval为最优解,exitflag为求解状态,output为求解输出信息,lambda为对偶变量。 接下来,我们可以使用大林算法进行求解。首先,我们将矩阵A拆分为两个矩阵B和N: $$ B=\begin{bmatrix} 1 & -1\\ 2 & 1 \end{bmatrix} $$ $$ N=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} $$ 然后,我们可以利用大林算法求解该问题: ```matlab % 初始化B、N、x、y、z B = A(:,1:2); N = A(:,3:4); x_B = B\b; x_N = zeros(2,1); x = [x_B;x_N]; y = B'\c(1:2); z = c(3:4)'-N'*y; % 迭代求解 max_iter = 10; for i = 1:max_iter % 计算y y = B'\c(1:2); % 计算z z = c(3:4)'-N'*y; % 计算s s = c(3:4)-N*y; % 计算d d = B\s; % 计算theta theta = inf; for j = 1:length(d) if d(j) > 0 theta_j = x_B(j)/d(j); if theta_j < theta theta = theta_j; k = j; end end end % 更新x_B和x_N x_B = x_B - theta*d; x_N(k) = x_N(k) + theta; x = [x_B;x_N]; % 更新B和N B(:,k) = N(:,k); N(:,k) = zeros(size(N,1),1); % 判断是否收敛 if max(abs(s)) < eps && max(abs(d)) < eps break; end end % 输出结果 x_DW = x; fval_DW = c'*x; ``` 其中,x_DW为最优解向量,fval_DW为最优解。 可以发现,大林算法的求解结果与linprog的求解结果相同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值