机器学习之核函数

参考资料

参考视频: 

https://royalsociety.org/science-events-and-lectures/2014/11/milner-lecture/ 英文的

http://www.powercam.cc/slide/6552 建议看这个,中文的 

http://www.powercam.cc/home.php?user=chli&f=slide&v=&fid=4097 ,这里面会讲解kernel 的基本概念, SVM,LDA,LR,PCA等如何使用kernel版本

简单的介绍:

在原空间中比较难进行分类,那么我们可以将他送到一个适当的空间就可以实现分类,比如我们在之前的空间要使用一个非线性的函数才能进行分类,但转换到新的空间之后只需要一个线性函数就可以实现分类。

设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入空间X到特征空间F的映射,其中F属于R(m),n<<m。根据核函数技术有:

                                                                    K(x,z) =<Φ(x),Φ(z) >                                                                           (1)

其中:<, >为内积,K(x,z)为核函数。从式(1)可以看出,核函数将m维高维空间的内积运算转化为n维低维输入空间的核函数计算,从而巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,从而为在高维特征空间解决复杂的分类或回归问题奠定了理论基础。

利用核函数计算高维度空间的内积

由下面的推导我们可以知道映射函数是我们不重要,我们只需要知道核函数表达式就可以计算出内积:

核函数带来的好处很明显,如果先要映射到高维空间然后进行模型学习,计算量远远大于在低维空间中直接直接采用核函数计算 

但是也有缺点,如果 φ(x) 具有足够高的维数,我们总是有足够的能力来拟合训练集,但是对于测试集的泛化往往不佳。非常通用的特征映射通常只基于局部光滑的原则,并且没有将足够的先验信息进行编码来解决高级问题。

 

 

近期任务:

重新看基于零核空间的行人重识别的论文。(求生欲啊)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值