基于动态用户偏好和服务质量的推荐算法

引用:

Zhang Y, Qian Y, Wang Y. A RecommendationAlgorithm Based on Dynamic User Preference and Service Quality[C]//2018 IEEEInternational Conference on Web Services (ICWS). IEEE, 2018: 91-98.

摘要:

在服务计算领域,用户偏好和服务质量可能随时间、环境和其他因素而变化。本文提出了一种既考虑用户动态特性又考虑动态服务质量(QoS)的推荐算法。一方面,该算法使用时态LDA(Latent Dirichlet Allocation)模型来挖掘动态用户偏好。另一方面,它考虑了QoS的动态变化,并关注最新的QoS。然后,基于动态用户偏好和动态QoS为用户生成服务推荐列表。基于真实数据集的实验结果表明,所提出的算法在准确性,召回率和多样性方面优于一些经典的和当今前沿的算法。

关键字:

服务组成;服务推荐;用户偏好;LDA;服务质量

1. 介绍

随着云计算,大数据和物联网等新兴计算领域的发展,互联网环境中的可用服务在数量和类型上都迅速增加。服务计算技术的成熟及其在各个领域的广泛应用,导致了服务经济,服务市场和服务业务的快速增长。因此,如何为市场提供“以用户为中心”的服务及其组合技术将成为服务计算的未来趋势之一,准确挖掘用户偏好并做出高效准确的服务推荐是非常重要和迫切的需要。

但是,在服务计算领域,用户偏好显示出动态的特征。首先,由于许多内部和外部因素,用户的长期偏好可能随着时间的推移而变化。其次,用户偏好可能由于其他用户的影响而改变。最后,用户的短期兴趣可能会在商家的意外推荐下突变,例如,产品体验的惊喜可能立即导致对用户的新偏好。因此,用户偏好改变过程的曲线应该是整体连贯,偶尔跳跃的。用户偏好的变化包括偏好内容的变化和偏好强度的变化。

此外,在服务计算领域,QoS(服务质量)也具有动态特性。首先,服务本身的质量可能包含升级,更新和其他更改。其次,QoS可能随着价格策略(例如,捆绑销售)和其他策略而改变。最后,网络环境的性能也是动态变化的,例如:吞吐量,延迟等动态变化。因此,对于每个服务,在提出建议时要注意其近期的QoS才能更有意义。

在文献中,已经提出了许多关于服务推荐的方法。然而大多数作品提出的是静态方法。一些动态方法仅考虑动态偏好或服务动态。只有少数方法],考虑用户偏好的动态和服务的动态。然而,这些最前沿的方法仍然存在一些问题。首先,动态偏好挖掘技术是有限的; 其次,它们忽略了一些评估指标,如多样性。

本文提出了DPDQ(DynamicPreference and Dynamic QoS)推荐算法,它既考虑了动态用户偏好,又考虑了动态服务质量。首

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值