机器学习-白板推导 P5_3 (PCA最大投影方差)

机器学习-白板推导 P5_3

PCA 最大投影方差

X = [ x 1 x 2 . . . x N ] T = [ x 1 T x 2 T ⋮ x N T ] = [ x 11 x 12 . . . x 1 p x 21 x 22 . . . x 2 p ⋮ ⋮ ⋱ ⋮ x N 1 x N 2 . . . x N p ] N ∗ p X=\begin{bmatrix} x_1 & x_2 &...& x_N \end{bmatrix}^T=\begin{bmatrix} x_1^T \\ x_2^T \\\vdots\\ x_N^T \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} &...& x_{1p} \\ x_{21} & x_{22} &...& x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} &...& x_{Np} \\ \end{bmatrix}_{N*p} X=[x1x2...xN]T=x1Tx2TxNT=x11x21xN1x12x22xN2.........x1px2pxNpNp
1 N = [ 1 1 ⋮ 1 ] 1_N= \begin{bmatrix} 1 \\ 1 \\\vdots\\ 1 \end{bmatrix} 1N=111
M e a n : X ‾ = 1 N ∑ i = 1 N x i = 1 N X T 1 N Mean:\overline{X}=\frac{1}{N}\sum_{i=1}^N x_i=\frac{1}{N}X^T1_N Mean:X=N1i=1Nxi=N1XT1N

C o v a r i a n c e : S = 1 N ∑ i = 1 N ( x i − X ‾ ) ( x i − X ‾ ) T = 1 N X T H X Covariance:S = \frac{1}{N}\sum_{i=1}^N (x_i- \overline{X})(x_i- \overline{X})^T= \frac{1}{N}X^THX Covariance:S=N1i=1N(xiX)(xiX)T=N1XTHX

一个中心:
将一组可能线性相关的变量,通过正交变换变换成一组线性无关的变量(主成分
原始特征空间的重构 \quad 相关 → \rightarrow 无关
两个基本点:
最大投影方差
最小重构距离 \quad 从投影返回到原始数据的代价

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

方法

1.中心化,每个样本点减去均值 x i − X ‾ x_i- \overline{X} xiX
2.投影,求最大方差
假设投影到    μ 1    \;\mu_1\; μ1上,投影过程为 ( x i − X ‾ ) T μ 1 s . t .        μ 1 T μ 1 = 1 (x_i- \overline{X})^T\mu_1 \quad s.t.\;\;\;\mu_1^T\mu_1=1 (xiX)Tμ1s.t.μ1Tμ1=1
投影后方差为:(因为投影前已经减去了均值,所以这里可以直接平方)
J = 1 N ∑ i = 1 N ( ( x i − X ‾ ) T μ 1 ) 2 = 1 N ∑ i = 1 N μ 1 T ( x i − X ‾ ) ( x i − X ‾ ) T μ 1 = μ 1 T ( ∑ i = 1 N 1 N ( x i − X ‾ ) ( x i − X ‾ ) T ) μ 1 = μ 1 T S μ 1 \begin{aligned} J&= \frac{1}{N}\sum_{i=1}^N \left( (x_i- \overline{X})^T\mu_1 \right) ^ 2 \\ &= \frac{1}{N}\sum_{i=1}^N \mu_1^T(x_i- \overline{X})(x_i- \overline{X})^T\mu_1 \\ &=\mu_1^T \left( \sum_{i=1}^N \frac{1}{N} (x_i- \overline{X})(x_i- \overline{X})^T \right) \mu_1\\ &=\mu_1^TS\mu_1 \end{aligned} J=N1i=1N((xiX)Tμ1)2=N1i=1Nμ1T(xiX)(xiX)Tμ1=μ1T(i=1NN1(xiX)(xiX)T)μ1=μ1TSμ1

优化问题
μ ^ = a r g max ⁡ μ 1 T S μ 1 s . t .      μ 1 T μ 1 = 1 \hat{\mu}=arg \max \mu_1^TS\mu_1 \quad s.t. \;\; \mu_1^T\mu_1=1 μ^=argmaxμ1TSμ1s.t.μ1Tμ1=1

拉格朗日乘值法:
L ( μ 1 , λ ) = μ 1 T S μ 1 + λ ( 1 − μ 1 T μ 1 ) L(\mu_1,\lambda)= \mu_1^TS\mu_1 + \lambda(1-\mu_1^T\mu_1) L(μ1,λ)=μ1TSμ1+λ(1μ1Tμ1)

∂ L ∂ μ 1 = 2 S μ 1 − 2 λ μ 1 = 0 \frac{\partial L}{\partial \mu_1}=2S\mu_1- 2\lambda\mu_1=0 μ1L=2Sμ12λμ1=0

S μ 1 = λ μ 1 S\mu_1=\lambda\mu_1 Sμ1=λμ1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值