5-降维(Dimensionality Reduction)-3-主成分分析(PCA)-最大投影方差角度

本文介绍了主成分分析(PCA)的概念,重点在于最大投影方差的角度选择。通过样本均值和协方差矩阵来理解PCA如何找到使样本点投影后分布最分散的方向,即主成分。PCA的目标是最大化投影方差并最小化重构距离,这两者在实践中是等价的。文章还涉及到中心化处理和拉格朗日乘子法在求解最大方差方向中的应用。
摘要由CSDN通过智能技术生成

接上一节:

数据

x i ∈ R p , i = 1 , 2 , … , N x_i\in \mathbb{R^p}, i=1,2,\dots,N xiRp,i=1,2,,N
D a t a : X = ( x 1 , x 2 , … , x N ) N × p T = ( x 1 T x 2 T ⋮ x N T ) = ( x 11 x 12 … x 1 p x 21 x 22 … x 2 p ⋮ x N 1 x N 2 … x N p ) N × p Data: X=(x_1,x_2,\dots,x_N)^T_{N\times p}= \begin{pmatrix} x_1^T\\ x_2^T\\ \vdots\\ x_N^T \end{pmatrix}= \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p}\\ x_{21} & x_{22} & \dots & x_{2p}\\ \vdots \\ x_{N1} & x_{N2} & \dots & x_{Np} \end{pmatrix}_{N\times p} Data:X=(x1,x2,,xN)N×pT=x1Tx2TxNT=x11x21xN1x12x22xN2x1px2pxNpN×p

结论

样本均值(Sample Mean): X ‾ p × 1 = 1 N ∑ i = 1 N x i = 1 N X T 1 N \overline{X}_{p\times1}=\dfrac{1}{N}\sum_{i=1}^{N}x_i=\dfrac{1}{N}X^T1_N X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值